Finding balance with physical exercise

“I was never good at working out. Every time I was about to go to the gym, I would always come up with an excuse to postpone the workout. Last winter break, however, my sister introduced me to some YouTube fitness classes, and I actually had fun doing them with her. I realized that, to me, working out in my living room was much more enjoyable that dragging my feet to the gym.

Just like in the lab, [my advisor] encourages us to do our very best but is always respectful of our limits.

When COVID hit, I knew I had to do something to keep me in shape, now that I was spending all my days on the couch. I signed up for Wellbeats,  an online class platform that MIT offers [as part of its virtual fitness offerings]. Soon, I was doing their online workouts almost every day. Some of the time, I am joined by my roommates. The workouts provide a great way for us to bond, take a break from work, and relieve some of the stress that tends to build up so quickly these days.

More recently, my advisor Ev Fedorenko has started to lead her own workouts for the lab over Zoom. She carefully walks us through every exercise, showing how to do it correctly. Just like in the lab, she encourages us to do our very best but is always respectful of our limits. So, not only am I the most fit I’ve ever been in my life, but I’ve also been able to connect with my lab in a new and meaningful way.”


Anna Ivanova is a graduate student who studies how the brain processes language in the labs of Evelina Fedorenko and Nancy Kanwisher. She is also an editor and regular contributor to the MIT Grad Blog.

#WeAreMcGovern

3 Questions: Omar Abudayyeh and Jonathan Gootenberg on COVID-19 tests

One key to stopping the spread of COVID-19 is knowing who has it. A delay in reliable tests and COVID-19 diagnostics in the US has unfortunately painted an unreliable picture of just how many people are infected and how the epidemic is evolving. But new testing options are now becoming available and the information from these diagnostics will help guide decisions and actions important for public health.

To find out more about the current state of COVID-19 testing, we contacted McGovern Institute Fellows, Omar Abuddayeh and Jonathan Gootenberg, who have been developing CRISPR technologies to rapidly diagnose COVID-19 and other infectious diseases.

Q: How do COVID-19 tests work?

A. There are three main types of tests:

1) Detection of nucleic acid. These tests directly test for the RNA genome of the virus in a variety of sample types, such as nasopharyngeal swabs or sputum. These tests are most commonly performed using polymerase chain reaction (PCR), which can amplify a small part of the virus RNA sequence billions of fold higher to allow detection with a fluorescence measuring instrument. These types of tests are highly sensitive, allowing for early detection of the virus days after infection. PCR tests require complex instrumentation and are usually performed by skilled personnel in an advanced laboratory setting. An alternative method is SHERLOCK, a nucleic acid based test that does not need complex instrumentation and can be read out using a paper strip akin to a pregnancy test, without any loss of sensitivity or specificity. The test is also low cost and can be performed in less than an hour. Because of these features, we are hoping to gain FDA approval that allows deployment at the point of care or at home testing with our COVID-19 SHERLOCK test kit.

2) Detection of viral proteins. Some tests use a paper strip that have antibodies against COVID-19 proteins. These allow for easy detection of the virus in less than an hour but are at least a million-fold less sensitive than nucleic acid based tests because there is no amplification step. This makes them less ideal for screening purposes as many patients will not have enough viral load in sputum or swabs and will receive false negative results.

3) Serology tests detecting antibodies against the virus. These tests can also be used as a paper strip with antibodies that detect other antibodies that develop in someone’s blood in response to COVID-19 infection. Antibodies do not show up in blood until 1-2 weeks after symptoms present, so these tests are not great for catching infection at early stages. Serology tests are more useful for determining if someone has had the infection, recovered, and developed immunity. They may serve a purpose for finding immune people and deciding whether they can go back to work, or for developing antibody-based therapies.

Q. Why aren’t there more COVID-19 tests available?

A. The difficulties in getting nucleic acid detection tests stem from a confluence of multiple factors, including limited supplies of tests, limited supplies of other consumables needed for testing (such as nasal swabs or RNA purification kits), insufficient testing bandwidth at sites that can perform tests (often due to bottlenecks in labor or instruments), and complications behind the logistics of assigning tests or reporting back results. Therefore, just producing more testing material would not solve the issue outright, and either more instrumentation and labor is required, or newer, more rapid tests need to be developed that can be performed in a more distributed manner with reduced dependence on equipment, centralized labs, or RNA purification kits.

Q. What kind of COVID-19 test are you developing now?

A. We are working on a nucleic acid-based test that does not require complex instrumentation, rapidly returns results (with a goal of under one hour), and can be performed at a point-of-care location without trained professionals. We hope to accomplish this using a combination of techniques. First we are incorporating isothermal amplification technologies, which, unlike current PCR-based tests, do not require intricate heating and cooling to operate. We are combining this with our CRISPR-based diagnostics, allowing for sensitive detection and readout in a simple visual format, akin to a pregnancy test. We hope that this test will significantly lower the barrier for accurate diagnosis and provide another approach for COVID-19 surveillance.

Rising to the challenge

Dear members and friends of the McGovern Institute,

I am writing to you under unprecedented circumstances. Rather than walking through the vast atrium of our building, stopping to talk with researchers about their work, I am at home, as are many of you. The last couple of weeks have been a whirlwind as we downsized personnel within the institute from 100% to 10% capacity. Thank you tremendously to everybody that helped this huge transition to go smoothly.

As the dust settles, what is striking is how we are all still finding ways to connect. Faculty meetings have resumed, and have included vibrant discussions. Grants are still being written, and processed by the excellent finance team, and papers are being published. In addition, some of our researchers have turned their attention to COVID-19. To name a few, Feng Zhang is not only continuing to develop SHERLOCK, his CRISPR-based diagnostic, to rapidly detect the novel coronavirus. He also just released the How We Feel app with Ben Silbermann, CEO of Pinterest, and a team of global researchers. This app will allow symptom tracking and researchers to ask pressing questions about the symptoms and progression of the virus. McGovern Fellows, Omar Abudayyeh and Jonathan Gootenberg, are also working on rapid COVID-19 diagnostics.

Other researchers are mobilizing to bring their knowledge and skills to mitigate some of the unexpected shortages. Jill Crittenden, a research scientist in the Graybiel lab, has been working with a consortium to gather and curate information about the three main approaches for decontaminating N95 face masks. Shortages of these masks are causing health workers to resort to reusing these masks. The consortium has put together a website and a document that help hospitals and other frontline organizations to quickly, easily examine the effectiveness of, and use, different decontamination protocols. Michael Wells, a former graduate student in Guoping Feng‘s lab has been collaborating to set up a database where researchers that want to volunteer to help can offer up their skills.

Labs are also look at the effects of the response to COVID-19. Rebecca Saxe is working to understand some of the effects of social isolation. Her lab recently posted their findings indicating that loneliness in social isolation leads to neural craving responses similar to hunger. Also from the Saxe lab, Heather Kosakowski and Michelle Hung are also examining the effects of social isolation.

We also have a new page on our website that features stories from members of the McGovern community who have risen to the challenge during this pandemic. I have been so heartened to read about the ways in which our members are supporting one another during this unprecedented time.

But those not working directly on COVID-19 have also greatly impressed me. The diligent, efficient, and calm way in which everybody responded to help to wind down research will help us to ramp up quickly when the time comes, and it will come. In the meantime, please be assured that my team and I are here to help however is needed. If you are a researcher, we are still here to support your communications, grant submissions, and resolve logistical issues that may come up.

If you are interested in following our research, continue to stay tuned as excellent research continues to emerge. And if you are one of the Friends and donors that has come forward to support our research, thank you. Indeed, thank you to all readers for everything that you do to support the research missions of the McGovern Institute. Wishing all the best to you and your families at this difficult time,

 

Bob Desimone
Director

Adapting CRISPR to detect COVID-19

“I’ve had the unique opportunity to help my PI, Feng Zhang, and McGovern Fellows, Jonathan Gootenberg and Omar Abudayyeh, develop SHERLOCK as a diagnostic tool for COVID-19.

SHERLOCK is a relatively new tool from the Zhang lab that uses unique properties of CRISPR enzymes to turn them into easily reprogrammable diagnostics. The technology really shines in this particular situation because it contains the plug-and-play features that makes all CRISPR technologies so transformative while also being amenable to low-resource settings. This allowed Feng to develop a test in a matter of days and send it out for testing by collaborators across the globe. We’ve already seen promising results from these collaborations that demonstrates the test is effective and we are excited to see how it may be adopted in countries that do not have the resources to expand PCR-based testing.

Our dream is to see someone who has never used a pipette before perform a SHERLOCK test in the comfort of their own kitchen.

In the US, appropriate testing has remained a significant barrier to proper control of this pandemic, regardless of the available resources. The bulk of the remaining work for this technology is aimed at tackling that problem. We want to turn SHERLOCK into an at-home test, allowing for widespread and scalable testing while maintaining the sensitivity of the gold-standard PCR test.

Our dream is to see someone who has never used a pipette before perform a SHERLOCK test in the comfort of their own kitchen. Thanks to all of the amazing support we have received, this dream has the very real opportunity to become a reality.”


Alim Ladha is a graduate student in Feng Zhang‘s lab and the 2019-2020 Tan-Yang Center for Autism Research Fellow.  In the Zhang lab, Alim tinkers with CRISPR gene-editing tools to make them work efficiently in cells.

#WeAreMcGovern

How We Feel app to track spread of COVID-19 symptoms

A major challenge with containing the spread of COVID-19 in many countries, has been an ability to quickly detect infection. Feng Zhang, along with Pinterest CEO Ben Silberman, and collaborators across scientific and medical disciplines, are coming together to launch an app called How We Feel, that will allow citizen scientists to self-report symptoms.

“It is so important to find a way to connect scientists to fight this pandemic,” explained Zhang. We wanted to find a fast and agile way to ultimately build a dynamic picture of symptoms associated with the virus.”

Designed to help scientists track and stop the spread of the novel coronavirus by creating an exchange of information between the citizens and scientists at scale, the new How We Feel app does just this. The app lets people self-report symptoms in 30 seconds or less and see how others in their area are feeling. To protect user privacy, the app explicitly does not require an account sign in, and doesn’t ask for identifying information such as the user’s name, phone number, or email address before they donate their data. Reporting symptoms only takes about 30 seconds, but the data shared by users has the potential to reveal and even predict outbreak hotspots, potentially providing insight into the spread and progression of COVID-19. To further contribute to the fight against COVID-19, Ben and Divya Silbermann will donate a meal to Feeding America for every download of the How We Feel app—up to 10 million meals.

The app was created by the How We Feel Project, a nonprofit collaboration between Silbermann, doctors, and an interdisciplinary group of researchers including Feng Zhang, investigator at the McGovern Institute for Brain Research, Broad Institute, and the James and Patricia Poitras Professor of Neuroscience at MIT. Other institutions currently involved include Harvard University T.H. Chan School of Public Health and Faculty of Arts and Sciences, University of Pennsylvania, Stanford University, University of Maryland School of Medicine, and the Weizmann Institute of Science.

Silbermann partnered closely with Feng Zhang, best known for his work on CRISPR, a pioneering gene-editing technique designed to treat diseases. Zhang and Silbermann first met in high school in Iowa. As the outbreak grew in the US, they called each other to figure out how the fields of biochemistry and technology could come together to find a solution for the lack of reliable health data from testing.

“Since high school, my friend Feng Zhang and I have been talking about the potential of the internet to connect regular people and scientists for the public good,” said Ben Silbermann, co-founder and CEO of, Pinterest. “When we saw how quickly COVID-19 was spreading, it felt like a critical moment to finally build that bridge between citizens and scientists that we’ve always wanted. I believe we’ve done that with How We Feel.”

Silbermann and Zhang formed the new HWF nonprofit because they believed a fully independent organization with a keen understanding of the needs of doctors and researchers should develop and manage the app. Now, they’re looking for opportunities to collaborate globally. Zhang is working to organize an international consortium of researchers from 11 countries that have developed similar health status surveys. The consortium is called the Coronavirus Census Collective (CCC).

The How We Feel app is available for download today in the US on iOS and Android, and via the web at http://www.howwefeel.org.

Protecting healthcare workers during the COVID-19 pandemic

“When the COVID-19 crisis hit the US this March, my biggest concern was the shortage of face masks, which are a key weapon for healthcare providers, frontline service workers, and the public to protect against respiratory transmission of COVID-19. In mid-March I kicked off a gofundme campaign for simple masks to protect frontline service workers but, when it was first announced that frontline healthcare providers were short, I completed the campaign and joined groups of scientists and physicians working on N95 mask reuse in Boston (MGB Center for COVID Innovation) and nation-wide (N95DECON). The N95DECON team and used zoom to connect volunteer scientists, engineers, clinicians and students from across the US to address this problem.

I am deeply committed to helping conserve and decontaminate the N95 masks that are essential for our healthcare workers to most safely treat COVID-19 patients.

I personally love zoom meetings from home for many reasons. For one thing, you can meet people instantaneously from all over the world, no need to travel at all. Also, it is less hierarchical than a typical conference because people all have the same place at the table, rather than some people being relegated to ‘the back of the room.’

McGovern research scientist Jill Crittenden (top left) in a zoom meeting with the Boston-based COVID-19 Innovation Center N95 Reuse team. Photo: Jill Crittenden

For two weeks, we met online daily and exchanged information, suggestions and ideas in a free, open, and transparent way. We reviewed a large body of the information on N95 decontamination and deliberated different methods based on evidence from scientific literature and available data. Our discussions followed the same principles I use in my own work in the Graybiel lab; exploring whether data is convincing, definitive, complete, and reproducible. I am so proud of our resulting report, which provides a summary of this critical information.

I am deeply committed to helping conserve and decontaminate the N95 masks that are essential for our healthcare workers to most safely treat COVID-19 patients. I know physicians personally who are very grateful that teams of scientists are doing the in-depth data analysis so that they can feel confident in what is best for their own health.”


Jill Crittenden is a research scientist in Ann Graybiel‘s lab at the McGovern Institute. She studies neural microcircuits in the basal ganglia that are relevant to Huntington’s and Parkinson’s diseases, dystonia, drug addiction, and repetitive movement disorders such as autism and obsessive-compulsive disorder. Read more about her N95DECON project on our news site.

Jill has also developed a set of helpful guidelines for face masks (either purchased or DIY). She discussed these guidelines, among other COVID-19 related topics on the podcast Dear Discreet Guide.

#WeAreMcGovern

New COVID-19 resource to address shortage of face masks

When the COVID-19 crisis hit the United States this March, McGovern scientist Jill Crittenden wanted to help. One of her greatest concerns was the shortage of face masks, which are a key weapon for healthcare providers, frontline service workers, and the public to protect against respiratory transmission of COVID-19. For those caring for COVID-19 patients, face masks that provide a near 100% seal are essential. These critical pieces of equipment, called N95 masks, are now scarce, and healthcare workers are now faced with reusing potentially contaminated masks.

To address this, Crittenden joined a team of 60 scientists and engineers, students and clinicians, drawn from universities and the private sector to synthesize the scientific literature about mask decontamination and create a set of best practices for bad times. Today the group unveiled its website, N95decon.org, which provides a summary of this critical information.

McGovern research scientist Jill Crittenden helped the N95DECON consortium assess face mask decontamination protocols so healthcare workers can easily access them for COVID-19 protection. Photo: Caitlin Cunningham

 

“I first heard about the group from Larissa Little, a Harvard graduate student with John Doyle,” explains Crittenden, who is a research scientist in Ann Graybiel‘s lab at the McGovern Institute. “The three of us began communicating because we are all also members of the Boston-based MGB COVID-19 Innovation Center and we agreed that helping to assess the flood of information on N95 decontamination would be an important contribution.”

The team members who came together over several weeks scoured hundreds of peer-reviewed publications, and held continuous online meetings to review studies of decontamination methods that had been used to inactivate previous viral and bacterial pathogens, and to then assess the potential for these methods to neutralize the novel SARS-CoV-2 virus that causes COVID-19.

“This group is absolutely amazing,” says Crittenden. “The zoom meetings are very productive because it is all data and solutions driven. Everyone throws out ideas, what they know and what the literature source is, with the only goal being to get to a data-based consensus efficiently.”

Reliable resource

The goal of the consortium was to provide overwhelmed health officials who don’t have the time to study the literature for themselves, reliable, pre-digested scientific information about the pros and cons of three decontamination methods that offer the best options should local shortages force a choice between decontamination and reuse, or going unmasked.

The three methods involve (1) heat and humidity (2) a specific wavelength of light called ultraviolet C (UVC) and (3) treatment with hydrogen peroxide vapors (HPV). The scientists did not endorse any one method but instead sought to describe the circumstances under which each could inactivate the virus provided rigorous procedures were followed. Devices that rely on heat, for instance, could be used under specific temperature, humidity, and time parameters. With UVC devices – which emit a particular wavelength and energy level of light – considerations involve making sure masks are properly oriented to the light so the entire surface is bathed in sufficient energy. The HPV method has the potential advantage of decontaminating masks in volume, as the U.S. Food and Drug Administration, acting in this emergency, has certified certain vendors to offer hydrogen peroxide vapor treatments on a large scale. In addition to giving health officials the scientific information to assess the methods best suited to their circumstances, N95decon.org points decision makers to sources of reliable and detailed how-to information provided by other organizations, institutions, and commercial services.

“While there is no perfect method for decontamination of N95 masks, it is crucial that decision-makers and users have as much information as possible about the strengths and weaknesses of various approaches,” said Manu Prakash, an associate professor of bioengineering at Stanford who helped coordinate this ad hoc, volunteer undertaking. “Manufacturers currently do not recommend N95 mask reuse. We aim to provide information and evidence in this critical time to help those on the front lines of this crisis make risk-management decisions given the specific conditions and limitations they face.”

The researchers stressed that decontamination does not solve the N95 shortage, and expressed the hope that new masks should be made available in large numbers as soon as possible so that health care workers and first providers could be issued fresh protective gear whenever needed as specified by the non-emergency guidelines set by the U.S. the Centers for Disease Control.

Forward thinking

Meanwhile, these ad hoc volunteers have pledged to continue working together to update N95decon.org website as new information becomes available, and to coordinate their efforts to do research to plug the gaps in current knowledge to avoid duplication of effort.

“We are, at heart, a group of people that want to help better equip hospitals and healthcare personnel in this time of crisis,” says Brian Fleischer, a surgeon at the University of Chicago Medical Center and a member of the N95DECON consortium. “As a healthcare provider, many of my colleagues across the country have expressed concern with a lack of quality information in this ever-evolving landscape. I have learned a great deal from this team and I look forward to our continued collaboration to positively affect change.”

Crittenden is hopeful that the new website will help healthcare workers make informed decisions about the safest methods available for decontamination and reuse of N95 masks. “I know physicians personally who are very grateful that teams of scientists are doing the in-depth data analysis so that they can feel confident in what is best for their own health,” she says.

The members of the N95decon.org team come from institutions including UC Berkeley, the University of Chicago, Stanford, Georgetown University, Harvard University, Seattle University, University of Utah, the McGovern Institute for Brain Research at MIT, the University of Michigan, and from Consolidated Sterilizers and X, the Moonshot Factory.

 

Ed Boyden wins prestigious entrepreneurial science award

The Austrian Association of Entrepreneurs announced today that Edward S. Boyden, the Y. Eva Tan Professor in Neurotechnology at MIT, has been awarded the 2020 Wilhelm Exner Medal.

Named after Austrian businessman Wilhelm Exner, the medal has been awarded annually since 1921 to scientists, inventors, and designers that are “promoting the economy directly or indirectly in an outstanding manner.” Past honorees include 22 Nobel laureates.

“It’s a great honor to receive this award, which recognizes not only the basic science impact of our group’s work, but the impact of the work in the industrial and startup worlds,” says Boyden, who is a professor of biological engineering and of brain and cognitive sciences at MIT.

Boyden is a leading scientist whose work is widely used in industry, both in his own startup companies and in existing companies. Boyden is also a member of MIT’s McGovern Institute for Brain Research, Media Lab, and Koch Institute for Integrative Cancer Research.

“I am so thrilled that Ed has received this honor,” says Robert Desimone, director of the McGovern Institute. “Ed’s work has transformed neuroscience, through optogenetics, expansion microscopy, and other findings that are pushing biotechnology forward too.”

He is interested in understanding the brain as a computational system, and builds and applies tools for the analysis of neural circuit structure and dynamics, in behavioral and disease contexts. He played a critical role in the development of optogenetics, a revolutionary tool where the activity of neurons can be controlled using light. Boyden also led the team that invented expansion microscopy, which gives an unprecedented view of the nanoscale structures of cells, even in the absence of special super resolution microscopy equipment. Exner Medal laureates include notable luminaries of science, including Robert Langer of MIT. In addition, Boyden has founded a number of companies based on his inventions in the busy biotech hub of Kendall Square, Cambridge. These include a startup that is seeking to apply expansion microscopy to medical problems.

Boyden will deliver his prize lecture at the Exner symposium in November 2020, during which economists and scientists come together to hear about the winner’s research.

2020 MacVicar Faculty Fellows named

The Office of the Vice Chancellor and the Registrar’s Office have announced this year’s Margaret MacVicar Faculty Fellows: materials science and engineering Professor Polina Anikeeva, literature Professor Mary Fuller, chemical engineering Professor William Tisdale, and electrical engineering and computer science Professor Jacob White.

Role models both in and out of the classroom, the new fellows have tirelessly sought to improve themselves, their students, and the Institute writ large. They have reimagined curricula, crossed disciplines, and pushed the boundaries of what education can be. They join a matchless academy of scholars committed to exceptional instruction and innovation.

Vice Chancellor Ian Waitz will honor the fellows at this year’s MacVicar Day symposium, “Learning through Experience: Education for a Fulfilling and Engaged Life.” In a series of lightning talks, student and faculty speakers will examine how MIT — through its many opportunities for experiential learning — supports students’ aspirations and encourages them to become engaged citizens and thoughtful leaders.

The event will be held on March 13 from 2:30-4 p.m. in Room 6-120. A reception will follow in Room 2-290. All in the MIT community are welcome to attend.

For nearly three decades, the MacVicar Faculty Fellows Program has been recognizing exemplary undergraduate teaching and advising around the Institute. The program was named after Margaret MacVicar, the first dean for undergraduate education and founder of the Undergraduate Research Opportunities Program (UROP). Nominations are made by departments and include letters of support from colleagues, students, and alumni. Fellows are appointed to 10-year terms in which they receive $10,000 per year of discretionary funds.

Polina Anikeeva

“I’m speechless,” Polina Anikeeva, associate professor of materials science and engineering and brain and cognitive sciences, says of becoming a MacVicar Fellow. “In my opinion, this is the greatest honor one could have at MIT.”

Anikeeva received her PhD from MIT in 2009 and became a professor in the Department of Materials Science and Engineering two years later. She attended St. Petersburg State Polytechnic University for her undergraduate education. Through her research — which combines materials science, electronics, and neurobiology — she works to better understand and treat brain disorders.

Anikeeva’s colleague Christopher Schuh says, “Her ability and willingness to work with students however and whenever they need help, her engaging classroom persona, and her creative solutions to real-time challenges all culminate in one of MIT’s most talented and beloved undergraduate professors.”

As an instructor, advisor, and marathon runner, Anikeeva has learned the importance of finding balance. Her colleague Lionel Kimerling reflects on this delicate equilibrium: “As a teacher, Professor Anikeeva is among the elite who instruct, inspire, and nurture at the same time. It is a difficult task to demand rigor with a gentle mentoring hand.”

Students call her classes “incredibly hard” but fun and exciting at the same time. She is “the consummate scientist, splitting her time evenly between honing her craft, sharing knowledge with students and colleagues, and mentoring aspiring researchers,” wrote one.

Her passion for her work and her devotion to her students are evident in the nomination letters. One student recounted their first conversation: “We spoke for 15 minutes, and after talking to her about her research and materials science, I had never been so viscerally excited about anything.” This same student described the guidance and support Anikeeva provided her throughout her time at MIT.

After working with Anikeeva to apply what she learned in the classroom to a real-world problem, this student recalled, “I honestly felt like an engineer and a scientist for the first time ever. I have never felt so fulfilled and capable. And I realize that’s what I want for the rest of my life — to feel the highs and lows of discovery.”

Anikeeva champions her students in faculty and committee meetings as well. She is a “reliable advocate for student issues,” says Caroline Ross, associate department head and professor in DMSE. “Professor Anikeeva is always engaged with students, committed to student well-being, and passionate about education.”

“Undergraduate teaching has always been a crucial part of my MIT career and life,” Anikeeva reflects. “I derive my enthusiasm and energy from the incredibly talented MIT students — every year they surprise me with their ability to rise to ever-expanding intellectual challenges. Watching them grow as scientists, engineers, and — most importantly — people is like nothing else.”

Mary Fuller

Experimentation is synonymous with education at MIT and it is a crucial part of literature Professor Mary Fuller’s classes. As her colleague Arthur Bahr notes, “Mary’s habit of starting with a discrete practical challenge can yield insights into much broader questions.”

Fuller attended Dartmouth College as an undergraduate, then received both her MA and PhD in English and American literature from The Johns Hopkins University. She began teaching at MIT in 1989. From 2013 to 2019, Fuller was head of the Literature Section. Her successor in the role, Shankar Raman, says that her nominators “found [themselves] repeatedly surprised by the different ways Mary has pushed the limits of her teaching here, going beyond her own comfort zones to experiment with new texts and techniques.”

“Probably the most significant thing I’ve learned in 30 years of teaching here is how to ask more and better questions,” says Fuller. As part of a series of discussions on ethics and computing, she has explored the possibilities of artificial intelligence from a literary perspective. She is also developing a tool for the edX platform called PoetryViz, which would allow MIT students and students around the world to practice close reading through poetry annotation in an entirely new way.

“We all innovate in our teaching. Every year. But, some of us innovate more than others,” Krishna Rajagopal, dean for digital learning, observes. “In addition to being an outstanding innovator, Mary is one of those colleagues who weaves the fabric of undergraduate education across the Institute.”

Lessons learned in Fuller’s class also underline the importance of a well-rounded education. As one alumna reflected, “Mary’s teaching carried a compassion and ethic which enabled non-humanities students to appreciate literature as a diverse, valuable, and rewarding resource for personal and social reflection.”

Professor Fuller, another student remarked, has created “an environment where learning is not merely the digestion of rote knowledge, but instead the broad-based exploration of ideas and the works connected to them.”

“Her imagination is capacious, her knowledge is deep, and students trust her — so that they follow her eagerly into new and exploratory territory,” says Professor of Literature Stephen Tapscott.

Fuller praises her students’ willingness to take that journey with her, saying, “None of my classes are required, and none are technical, so I feel that students have already shown a kind of intellectual generosity by putting themselves in the room to do the work.”

For students, the hard work is worth it. Mary Fuller, one nominator declared, is exactly “the type of deeply impactful professor that I attended MIT hoping to learn from.”

William Tisdale

William Tisdale is the ARCO Career Development Professor of chemical engineering and, according to his colleagues, a “true star” in the department.

A member of the faculty since 2012, he received his undergraduate degree from the University of Delaware and his PhD from the University of Minnesota. After a year as a postdoc at MIT, Tisdale became an assistant professor. His research interests include nanotechnology and energy transport.

Tisdale’s colleague Kristala Prather calls him a “curriculum fixer.” During an internal review of Course 10 subjects, the department discovered that 10.213 (Chemical and Biological Engineering) was the least popular subject in the major and needed to be revised. After carefully evaluating the coursework, and despite having never taught 10.213 himself, Tisdale envisioned a novel way of teaching it. With his suggestions, the class went from being “despised” to loved, with subject evaluations improving by 70 percent from one spring to the next. “I knew Will could make a difference, but I had no idea he could make that big of a difference in just one year,” remarks Prather.

One student nominator even went so far as to call 10.213, as taught by Tisdale, “one of my best experiences at MIT.”

Always patient, kind, and adaptable, Tisdale’s willingness to tackle difficult problems is reflected in his teaching. “While the class would occasionally start to mutiny when faced with a particularly confusing section, Prof. Tisdale would take our groans on with excitement,” wrote one student. “His attitude made us feel like we could all get through the class together.” Regardless of how they performed on a test, wrote another, Tisdale “clearly sent the message that we all always have so much more to learn, but that first and foremost he respected you as a person.”

“I don’t think I could teach the way I teach at many other universities,” Tisdale says. “MIT students show up on the first day of class with an innate desire to understand the world around them; all I have to do is pull back the curtain!”

“Professor Tisdale remains the best teacher, mentor, and role model that I have encountered,” one student remarked. “He has truly changed the course of my life.”

“I am extremely thankful to be at a university that values undergraduate education so highly,” Tisdale says. “Those of us who devote ourselves to undergraduate teaching and mentoring do so out of a strong sense of responsibility to the students as well as a genuine love of learning. There are few things more validating than being rewarded for doing something that already brings you joy.”

Jacob White

Jacob White is the Cecil H. Green Professor of Electrical Engineering and Computer Science (EECS) and chair of the Committee on Curricula. After completing his undergraduate degree at MIT, he received a master’s degree and doctorate from the University of California at Berkeley. He has been a member of the Course 6 faculty since 1987.

Colleagues and students alike observed White’s dedication not just to teaching, but to improving teaching throughout the Institute. As Luca Daniel and Asu Ozdaglar of the EECS department noted in their nomination letter, “Jacob completely understands that the most efficient way to make his passion and ideas for undergraduate education have a real lasting impact is to ‘teach it to the teachers!’”

One student wrote that White “has spent significant time and effort educating the lab assistants” of 6.302 (Feedback System Design). As one of these teaching assistants confirmed, White’s “enthusiastic spirit” inspired them to spend hours discussing how to best teach the subject. “Many people might think this is not how they want to spend their Thursday nights,” the student wrote. “I can speak for myself and the other TAs when I say that it was an incredibly fun and educational experience.”

His work to improve instruction has even expanded to other departments. A colleague describes White’s efforts to revamp 8.02 (Physics II) as “Herculean.” Working with a group of students and postdocs to develop experiments for this subject, “he seemed to be everywhere at once … while simultaneously teaching his own class.” Iterations took place over a year and a half, after which White trained the subject’s TAs as well. Hundreds of students are benefitting from these improved experiments.

White is, according to Daniel and Ozdaglar, “a colleague who sincerely, genuinely, and enormously cares about our undergraduate students and their education, not just in our EECS department, but also in our entire MIT home.”

When he’s not fine-tuning pedagogy or conducting teacher training, he is personally supporting his students. A visiting student described White’s attention: “He would regularly meet with us in groups of two to make sure we were learning. In a class of about 80 students in a huge lecture hall, it really felt like he cared for each of us.”

And his zeal has rubbed off: “He made me feel like being excited about the material was the most important thing,” one student wrote.
The significance of such a spark is not lost on White.

“As an MIT freshman in the late 1970s, I joined an undergraduate research program being pioneered by Professor Margaret MacVicar,” he says. “It was Professor MacVicar and UROP that put me on the academic’s path of looking for interesting problems with instructive solutions. It is a path I have walked for decades, with extraordinary colleagues and incredible students. So, being selected as a MacVicar Fellow? No honor could mean more to me.”