New gift expands mental illness studies at Poitras Center for Psychiatric Disorders Research

One in every eight people—970 million globally—live with mental illness, according to the World Health Organization, with depression and anxiety being the most common mental health conditions worldwide. Existing therapies for complex psychiatric disorders like depression, anxiety, and schizophrenia have limitations, and federal funding to address these shortcomings is growing increasingly uncertain.

Jim and Pat Poitras
James and Patricia Poitras at an event co-hosted by the McGovern Institute and Autism Speaks. Photo: Justin Knight

Patricia and James Poitras ’63 have committed $8 million to the Poitras Center for Psychiatric Disorders Research to launch pioneering research initiatives aimed at uncovering the brain basis of major mental illness and accelerating the development of novel treatments.

“Federal funding rarely supports the kind of bold, early-stage research that has the potential to transform our understanding of psychiatric illness. Pat and I want to help fill that gap—giving researchers the freedom to follow their most promising leads, even when the path forward isn’t guaranteed,” says James Poitras, who is chair of the McGovern Institute Board.

Their latest gift builds upon their legacy of philanthropic support for psychiatric disorders research at MIT, which now exceeds $46 million.

“With deep gratitude for Jim and Pat’s visionary support, we are eager to launch a bold set of studies aimed at unraveling the neural and cognitive underpinnings of major mental illnesses,” says Robert Desimone, director of the McGovern Institute, home to the Poitras Center. “Together, these projects represent a powerful step toward transforming how we understand and treat mental illness.”

A legacy of support

Soon after joining the McGovern Institute Leadership Board in 2006, the Poitrases made a $20 million commitment to establish the Poitras Center for Psychiatric Disorders Research at MIT. The center’s goal, to improve human health by addressing the root causes of complex psychiatric disorders, is deeply personal to them both.

“We had decided many years ago that our philanthropic efforts would be directed towards psychiatric research. We could not have imagined then that this perfect synergy between research at MIT’s McGovern Institute and our own philanthropic goals would develop,” recalls Patricia.

The center supports research at the McGovern Institute and collaborative projects with institutions such as the Broad Institute, McLean Hospital, Mass General Brigham and other clinical research centers. Since its establishment in 2007, the center has enabled advances in psychiatric research including the development of a machine learning “risk calculator” for bipolar disorder, the use of brain imaging to predict treatment outcomes for anxiety, and studies demonstrating that mindfulness can improve mental health in adolescents.

A scientist speaks at a podium with an image of DNA on the wall behind him.
Feng Zhang, the James and Patricia Poitras Professor of Neuroscience at MIT, delivers a lecture at the Poitras Center’s 10th anniversary celebration in 2017. Photo: Justin Knight

For the past decade, the Poitrases have also fueled breakthroughs in McGovern Investigator Feng Zhang’s lab, backing the invention of powerful CRISPR systems and other molecular tools that are transforming biology and medicine. Their support has enabled the Zhang team to engineer new delivery vehicles for gene therapy, including vehicles capable of carrying genetic payloads that were once out of reach. The lab has also advanced innovative RNA-guided gene engineering tools such as NovaIscB, published in Nature Biotechnology in May 2025. These revolutionary genome editing and delivery technologies hold promise for the next generation of therapies needed for serious psychiatric illness.

In addition to fueling research in the center, the Poitras family has gifted two endowed professorships—the James and Patricia Poitras Professor of Neuroscience at MIT, currently held by Feng Zhang, and the James W. (1963) and Patricia T. Poitras Professor of Brain and Cognitive Sciences at MIT, held by Guoping Feng—and an annual postdoctoral fellowship at the McGovern Institute.

New initiatives at the Poitras Center

The Poitras family’s latest commitment to the Poitras Center will launch an ambitious set of new projects that bring together neuroscientists, clinicians, and computational experts to probe underpinnings of complex psychiatric disorders including schizophrenia, anxiety, and depression. These efforts reflect the center’s core mission: to speed scientific discovery and therapeutic innovation in the field of psychiatric brain disorders research.

McGovern cognitive neuroscientists Evelina Fedorenko PhD ‘07 and Nancy Kanwisher ’80, PhD ’86, the Walter A. Rosenblith Professor of Cognitive Neuroscience—in collaboration with psychiatrist Ann Shinn of McLean Hospital—will explore how altered inner speech and reasoning contribute to the symptoms of schizophrenia. They will collect functional MRI data from individuals diagnosed with schizophrenia and matched controls as they perform reasoning tasks. The goal is to identify the brain activity patterns that underlie impaired reasoning in schizophrenia, a core cognitive disruption in the disorder.

Three women wearing name tags smile for hte camera.
Patricia Poitras (center) with McGovern Investigators Nancy Kanwisher ’80, PhD ’86 (left) and Martha Constantine-Paton (right) at the Poitras Center’s 10th anniversary celebration in 2017. Photo: Justin Knight

A complementary line of investigation will focus on the role of inner speech—the “voice in our head” that shapes thought and self-awareness. The team will conduct a large-scale online behavioral study of neurotypical individuals to analyze how inner speech characteristics correlate with schizophrenia-spectrum traits. This will be followed by neuroimaging work comparing brain architecture among individuals with strong or weak inner voices and people with schizophrenia, with the aim of discovering neural markers linked to self-talk and disrupted cognition.

A different project led by McGovern neuroscientist Mark Harnett and 2024–2026 Poitras Center Postdoctoral Fellow Cynthia Rais focuses on how ketamine—an increasingly used antidepressant—alters brain circuits to produce rapid and sustained improvements in mood. Despite its clinical success, ketamine’s mechanisms of action remain poorly understood. The Harnett lab is using sophisticated tools to track how ketamine affects synaptic communication and large-scale brain network dynamics, particularly in models of treatment-resistant depression. By mapping these changes at both the cellular and systems levels, the team hopes to reveal how ketamine lifts mood so quickly—and inform the development of safer, longer-lasting antidepressants.

Guoping Feng is leveraging a new animal model of depression to uncover the brain circuits that drive major depressive disorder. The new animal model provides a powerful system for studying the intricacies of mood regulation. Feng’s team is using state-of-the-art molecular tools to identify the specific genes and cell types involved in this circuit, with the goal of developing targeted treatments that can fine-tune these emotional pathways.

“This is one of the most promising models we have for understanding depression at a mechanistic level,” says Feng, who is also associate director of the McGovern Institute. “It gives us a clear target for future therapies.”

Another novel approach to treating mood disorders comes from the lab of James DiCarlo, the Peter de Florez Professor of Neuroscience at MIT, who is exploring the brain’s visual-emotional interface as a therapeutic tool for anxiety. The amygdala, a key emotional center in the brain, is heavily influenced by visual input. DiCarlo’s lab is using advanced computational models to design visual scenes that may subtly shift emotional processing in the brain—essentially using sight to regulate mood. Unlike traditional therapies, this strategy could offer a noninvasive, drug-free option for individuals suffering from anxiety.

Together, these projects exemplify the kind of interdisciplinary, high-impact research that the Poitras Center was established to support.

“Mental illness affects not just individuals, but entire families who often struggle in silence and uncertainty,” adds Patricia. “Our hope is that Poitras Center scientists will continue to make important advancements and spark novel treatments for complex mental health disorders and most of all, give families living with these conditions a renewed sense of hope for the future.”

Learning from punishment

From toddlers’ timeouts to criminals’ prison sentences, punishment reinforces social norms, making it known that an offender has done something unacceptable. At least, that is usually the intent—but the strategy can backfire. When a punishment is perceived as too harsh, observers can be left with the impression that an authority figure is motivated by something other than justice.

It can be hard to predict what people will take away from a particular punishment, because everyone makes their own inferences not just about the acceptability of the act that led to the punishment, but also the legitimacy of the authority who imposed it. A new computational model developed by scientists at MIT’s McGovern Institute makes sense of these complicated cognitive processes, recreating the ways people learn from punishment and revealing how their reasoning is shaped by their prior beliefs.

Their work, reported August 4 in the journal PNAS, explains how a single punishment can send different messages to different people and even strengthen the opposing viewpoints of groups who hold different opinions about authorities or social norms.

Modeling punishment

“The key intuition in this model is the fact that you have to be evaluating simultaneously both the norm to be learned and the authority who’s punishing,” says McGovern Investigator and John W. Jarve Professor of Brain and Cognitive Sciences Rebecca Saxe, who led the research. “One really important consequence of that is even where nobody disagrees about the facts—everybody knows what action happened, who punished it, and what they did to punish it—different observers of the same situation could come to different conclusions.”

For example, she says, a child who is sent to timeout after biting a sibling might interpret the event differently than the parent. One might see the punishment as proportional and important, teaching the child not to bite. But if the biting, to the toddler, seemed a reasonable tactic in the midst of a squabble, the punishment might be seen as unfair, and the lesson will be lost.

People draw on their own knowledge and opinions when they evaluate these situations—but to study how the brain interprets punishment, Saxe and graduate student Setayesh Radkani wanted to take those personal ideas out of the equation. They needed a clear understanding of the beliefs that people held when they observed a punishment, so they could learn how different kinds of information altered their perceptions. So Radkani set up scenarios in imaginary villages where authorities punished individuals for actions that had no obvious analog in the real world.

Woman in red sweater smiling to camera
Graduate student Setayesh Radkani uses tools from psychology, cognitive neuroscience and machine learning to understand the social and moral mind. Photo: Caitlin Cunningham

Participants observed these scenarios in a series of experiments, with different information offered in each one. In some cases, for example, participants were told that the person being punished was either an ally or competitor of the authority, whereas in other cases, the authority’s possible bias was left ambiguous.

“That gives us a really controlled setup to vary prior beliefs,” Radkani explains. “We could ask what people learn from observing punitive decisions with different severities, in response to acts that vary in their level of wrongness, by authorities that vary in their level of different motives.”

For each scenario, participants were asked to evaluate four factors: how much the authority figure cared about justice; the selfishness of the authority; the authority’s bias for or against the individual being punished; and the wrongness of the punished act. The research team asked these questions when participants were first introduced to the hypothetical society, then tracked how their responses changed after they observed the punishment. Across the scenarios, participants’ initial beliefs about the authority and the wrongness of the act shaped the extent to which those beliefs shifted after they observed the punishment.

Radkani was able to replicate these nuanced interpretations using a cognitive model framed around an idea that Saxe’s team has long used to think about how people interpret the actions of others. That is, to make inferences about others’ intentions and beliefs, we assume that people choose actions that they expect will help them achieve their goals.

To apply that concept to the punishment scenarios, Radkani developed a model that evaluates the meaning of a punishment (an action aimed at achieving a goal of the authority) by considering the harm associated with that punishment; its costs or benefits to the authority; and its proportionality to the violation. By assessing these factors, along with prior beliefs about the authority and the punished act, the model was able to predict people’s responses to the hypothetical punishment scenarios, supporting the idea that people use a similar mental model. “You need to have them consider those things, or you can’t make sense of how people understand punishment when they observe it,” Saxe says.

Even though the team designed their experiments to preclude preconceived ideas about the people and actions in their imaginary villages, not everyone drew the same conclusions from the punishments they observed. Saxe’s group found that participants’ general attitudes toward authority influenced their interpretation of events. Those with more authoritarian attitudes—assessed through a standard survey—tended to judge punished acts as more wrong and authorities as more motivated by justice than other observers.

“If we differ from other people, there’s a knee-jerk tendency to say, ‘either they have different evidence from us, or they’re crazy,’” Saxe says. Instead, she says, “It’s part of the way humans think about each other’s actions.”

“When a group of people who start out with different prior beliefs get shared evidence, they will not end up necessarily with shared beliefs. That’s true even if everybody is behaving rationally,” says Saxe.

This way of thinking also means that the same action can simultaneously strengthen opposing viewpoints. The Saxe lab’s modeling and experiments showed that when those viewpoints shape individuals’ interpretations of future punishments, the groups’ opinions will continue to diverge. For instance, a punishment that seems too harsh to a group who suspects an authority is biased can make that group even more skeptical of the authority’s future actions. Meanwhile, people who see the same punishment as fair and the authority as just will be more likely to conclude that the authority figure’s future actions are also just. “You will get a vicious cycle of polarization, staying and actually spreading to new things,” says Radkani.

The researchers say their findings point toward strategies for communicating social norms through punishment. “It is exactly sensible in our model to do everything you can to make your action look like it’s coming out of a place of care for the long-term outcome of this individual, and that it’s proportional to the norm violation they did,” Saxe says. “That is your best shot at getting a punishment interpreted pedagogically, rather than as evidence that you’re a bully.”

Nevertheless, she says that won’t always be enough. “If the beliefs are strong the other way, it’s very hard to punish and still sustain a belief that you were motivated by justice.”

This study was funded, in part, by the Patrick J McGovern Foundation.

How the brain distinguishes oozing fluids from solid objects

Imagine a ball bouncing down a flight of stairs. Now think about a cascade of water flowing down those same stairs. The ball and the water behave very differently, and it turns out that your brain has different regions for processing visual information about each type of physical matter.

In a new study, MIT neuroscientists have identified parts of the brain’s visual cortex that respond preferentially when you look at “things” — that is, rigid or deformable objects like a bouncing ball. Other brain regions are more activated when looking at “stuff” — liquids or granular substances such as sand.

This distinction, which has never been seen in the brain before, may help the brain plan how to interact with different kinds of physical materials, the researchers say.

“When you’re looking at some fluid or gooey stuff, you engage with it in different way than you do with a rigid object. With a rigid object, you might pick it up or grasp it, whereas with fluid or gooey stuff, you probably are going to have to use a tool to deal with it,” says Nancy Kanwisher, the Walter A. Rosenblith Professor of Cognitive Neuroscience; a member of the McGovern Institute for Brain Research and MIT’s Center for Brains, Minds, and Machines; and the senior author of the study.

MIT postdoc Vivian Paulun, who is joining the faculty of the University of Wisconsin at Madison this fall, is the lead author of the paper, which appears today in the journal Current Biology. RT Pramod, an MIT postdoc, and Josh Tenenbaum, an MIT professor of brain and cognitive sciences, are also authors of the study.

Stuff vs. things

Decades of brain imaging studies, including early work by Kanwisher, have revealed regions in the brain’s ventral visual pathway that are involved in recognizing the shapes of 3D objects, including an area called the lateral occipital complex (LOC). A region in the brain’s dorsal visual pathway, known as the frontoparietal physics network (FPN), analyzes the physical properties of materials, such as mass or stability.

Although scientists have learned a great deal about how these pathways respond to different features of objects, the vast majority of these studies have been done with solid objects, or “things.”

“Nobody has asked how we perceive what we call ‘stuff’ — that is, liquids or sand, honey, water, all sorts of gooey things. And so we decided to study that,” Paulun says.

These gooey materials behave very differently from solids. They flow rather than bounce, and interacting with them usually requires containers and tools such as spoons. The researchers wondered if these physical features might require the brain to devote specialized regions to interpreting them.

To explore how the brain processes these materials, Paulun used a software program designed for visual effects artists to create more than 100 video clips showing different types of things or stuff interacting with the physical environment. In these videos, the materials could be seen sloshing or tumbling inside a transparent box, being dropped onto another object, or bouncing or flowing down a set of stairs.

The researchers used functional magnetic resonance imaging (fMRI) to scan the visual cortex of people as they watched the videos. They found that both the LOC and the FPN respond to “things” and “stuff,” but that each pathway has distinctive subregions that respond more strongly to one or the other.

“Both the ventral and the dorsal visual pathway seem to have this subdivision, with one part responding more strongly to ‘things,’ and the other responding more strongly to ‘stuff,’” Paulun says. “We haven’t seen this before because nobody has asked that before.”

Roland Fleming, a professor of experimental psychology at Justus Liebig University of Geissen, described the findings as a “major breakthrough in the scientific understanding of how our brains represent the physical properties of our surrounding world.”

“We’ve known the distinction exists for a long time psychologically, but this is the first time that it’s been really mapped onto separate cortical structures in the brain. Now we can investigate the different computations that the distinct brain regions use to process and represent objects and materials,” says Fleming, who was not involved in the study.

Physical interactions

The findings suggest that the brain may have different ways of representing these two categories of material, similar to the artificial physics engines that are used to create video game graphics. These engines usually represent a 3D object as a mesh, while fluids are represented as sets of particles that can be rearranged.

“The interesting hypothesis that we can draw from this is that maybe the brain, similar to artificial game engines, has separate computations for representing and simulating ‘stuff’ and ‘things.’ And that would be something to test in the future,” Paulun says.

Portrait of smiling woman wearing a grey sweater.
McGovern Institute postdoc Vivian Paulun, who is joining the faculty of the University of Wisconsin at Madison in the fall of 2025, is the lead author of the “things vs. stuff” paper, which appears today in the journal Current Biology. Photo: Steph Stevens

The researchers also hypothesize that these regions may have developed to help the brain understand important distinctions that allow it to plan how to interact with the physical world. To further explore this possibility, the researchers plan to study whether the areas involved in processing rigid objects are also active when a brain circuit involved in planning to grasp objects is active.

They also hope to look at whether any of the areas within the FPN correlate with the processing of more specific features of materials, such as the viscosity of liquids or the bounciness of objects. And in the LOC, they plan to study how the brain represents changes in the shape of fluids and deformable substances.

The research was funded by the German Research Foundation, the U.S. National Institutes of Health, and a U.S. National Science Foundation grant to the Center for Brains, Minds, and Machines.

 

Adolescents’ willingness to explore is shaped by socioeconomic status

Exploration is essential to learning—and a new study from scientists at MIT’s McGovern Institute suggests that students may be less willing to explore if they come from a low socioeconomic environment. The study, which focused on adolescents and was published July 9, 2025, in the journal Nature Communications, shows how differences in learning strategies might contribute to socioeconomic-related disparities in academic achievement.

Students with low socioeconomic status (SES)—a measure that takes into account parents’ income levels and educational attainment—tend to lag behind their higher-SES peers academically. Limited resources at home can restrict access to educational tools and experiences, likely contributing to these disparities. But the new study, led by McGovern Institute Investigator John Gabrieli, shows that students from low-SES backgrounds may approach learning differently, too.

“We often think about external factors when we think about socioeconomic differences in learning, but kids’ mindsets and internal factors can also play a role,” says Alexandra Decker, a postdoctoral fellow in Gabrieli’s lab who ran the study. Understanding such differences can help educators develop strategies to reduce disparities and help all students succeed.

The value of exploration

Exploration is a vital part of development, particularly during adolescence. By trying new things and testing limits, children begin to find their way in the world, discovering the subjects and experiences that motivate them. That’s important for obtaining new knowledge, both in and out of school. “There’s a lot of research suggesting that exploration is a really important mechanism that children use for learning,” Decker says. “Exploring their environment really broadly and making mistakes helps them get the feedback that they need for learning,” she says.

Because the outcomes of exploration are unknown, this way of interacting with the world involves risk. “If you try something new, the outcome is uncertain, and it could lead to a bad outcome before things get better. You might lose out, at least in the short term. ” Decker says.

At school, students can explore in a variety of ways, such as by asking questions in class or taking on courses in unfamiliar subjects. Both are opportunities to learn something new, though they may seem less safe than sitting quietly and sticking to more comfortable coursework. Decker points out that this kind of exploration might feel particularly risky when students feel they lack the resources to compensate if things don’t go well.

“If you’re in an environment that’s really enriching, you have resources to compensate for challenges that might be accrued through exploring. If you take a new course and you struggle, you can use your resources to get a tutor and overcome these challenges. Your environment can support exploration and its costs,” she says. “But if you’re in an environment where you don’t have resources to compensate for bad outcomes, you might not take that course that could lead to unknown outcomes.”

Risk-benefit analysis

To investigate the relationship between SES and exploration, Gabrieli’s team had students play a computer game in which they earned points for pumping up balloons as much as possible without popping them. The most successful strategy was to explore the limits early on by pumping the first balloons until they popped, thereby learning when to stop with future balloons. A less exploratory approach could keep all the balloons intact, but earn fewer points over the course of the game.

The students who participated in the study were between the ages of 12 and 14 and came from families with a wide range of SES. Those from lower-SES backgrounds were less likely to explore in the balloon pumping task, resulting in lower outcomes in the game. What’s more, the researchers found a relationship between students’ exploration in the game and their real-world academic performance. Those who explored the least in the balloon-popping game had lower grades than students who explored more. For students at lower-SES levels, reduced exploration also correlated to lower scores on standardized tests of academic skills.

The researchers took a closer look at the data to investigate why some students explored more than others in their game. Their analysis indicated that students who were reluctant to explore were more strongly motivated by avoiding losses than students who had pushed the limits as they pumped their balloons.

The finding suggests that potential losses might be particularly distressing to lower-SES students, says Gabrieli, who is also the Grover Hermann Professor of Health Sciences and Technology and a professor of brain and cognitive sciences at MIT. Decker adds students from less affluent backgrounds may have found losses to be more consequential than they are for students whose families have more resources, so it makes sense that those students might take greater pains to avoid them.

This is not the first time Gabrieli’s group has found that evidence of differences in the ways students from different socioeconomic backgrounds make decisions. In a brain imaging study published last year, they found that the brains of adolescents from low-SES backgrounds respond less to rewards than the brains of their higher-SES peers. “How you think about the world—in terms of what’s rewarding, risks worth taking or not taking—seems strongly influenced by the environment that you’re growing up in,” he says.

Decker notes that regardless of SES, students in the study were generally more willing to explore when they had experienced more recent successes in the task. This finding, along with what the team learned about how loss aversion curtails exploration, suggest strategies that educators might use to encourage more exploration in the classroom. “Low-stakes opportunities for kids to engage in exploratory risk-taking with positive feedback could go a long way to helping kids feel more comfortable exploring,” Decker says.

 

A bionic knee integrated into tissue can restore natural movement

MIT researchers have developed a new bionic knee that can help people with above-the-knee amputations walk faster, climb stairs, and avoid obstacles more easily than they could with a traditional prosthesis.

Unlike prostheses in which the residual limb sits within a socket, the new system is directly integrated with the user’s muscle and bone tissue. This enables greater stability and gives the user much more control over the movement of the prosthesis.

Participants in a small clinical study also reported that the limb felt more like a part of their own body, compared to people who had more traditional above-the-knee amputations.

“A prosthesis that’s tissue-integrated — anchored to the bone and directly controlled by the nervous system — is not merely a lifeless, separate device, but rather a system that is carefully integrated into human physiology, offering a greater level of prosthetic embodiment. It’s not simply a tool that the human employs, but rather an integral part of self,” says Hugh Herr, a professor of media arts and sciences, co-director of the K. Lisa Yang Center for Bionics at MIT, an associate member of MIT’s McGovern Institute for Brain Research, and the senior author of the new study.

Tony Shu PhD ’24 is the lead author of the paper, which appears today in Science.

A subject with the osseointegrated mechanoneural prosthesis overcomes an obstacle placed in their walking path by volitionally flexing and extending their phantom knee joint.

Better control

Over the past several years, Herr’s lab has been working on new prostheses that can extract neural information from muscles left behind after an amputation and use that information to help guide a prosthetic limb.

During a traditional amputation, pairs of muscles that take turns stretching and contracting are usually severed, disrupting the normal agonist-antagonist relationship of the muscles. This disruption makes it very difficult for the nervous system to sense the position of a muscle and how fast it’s contracting.

Using the new surgical approach developed by Herr and his colleagues, known as agonist-antagonist myoneuronal interface (AMI), muscle pairs are reconnected during surgery so that they still dynamically communicate with each other within the residual limb. This sensory feedback helps the wearer of the prosthesis to decide how to move the limb, and also generates electrical signals that can be used to control the prosthetic limb.

 

 

In a 2024 study, the researchers showed that people with amputations below the knee who received the AMI surgery were able to walk faster and navigate around obstacles much more naturally than people with traditional below-the-knee amputations.

In the new study, the researchers extended the approach to better serve people with amputations above the knee. They wanted to create a system that could not only read out signals from the muscles using AMI but also be integrated into the bone, offering more stability and better sensory feedback.

To achieve that, the researchers developed a procedure to insert a titanium rod into the residual femur bone at the amputation site. This implant allows for better mechanical control and load bearing than a traditional prosthesis. Additionally, the implant contains 16 wires that collect information from electrodes located on the AMI muscles inside the body, which enables more accurate transduction of the signals coming from the muscles.

This bone-integrated system, known as e-OPRA, transmits AMI signals to a new robotic controller developed specifically for this study. The controller uses this information to calculate the torque necessary to move the prosthesis the way that the user wants it to move.

The new bionic knee can help people with above-the-knee amputations walk faster, climb stairs, and avoid obstacles more easily than they could with a traditional prosthesis. The new system is directly integrated with the user’s muscle and bone tissue (bottom row right). This enables greater stability and gives the user much more control over the movement of the prosthesis. Image courtesy of the researchers

“All parts work together to better get information into and out of the body and better interface mechanically with the device,” Shu says. “We’re directly loading the skeleton, which is the part of the body that’s supposed to be loaded, as opposed to using sockets, which is uncomfortable and can lead to frequent skin infections.”

In this study, two subjects received the combined AMI and e-OPRA system, known as an osseointegrated mechanoneural prosthesis (OMP). These users were compared with eight who had the AMI surgery but not the e-OPRA implant, and seven users who had neither AMI nor e-OPRA. All subjects took a turn at using an experimental powered knee prosthesis developed by the lab.

The researchers measured the participants’ ability to perform several types of tasks, including bending the knee to a specified angle, climbing stairs, and stepping over obstacles. In most of these tasks, users with the OMP system performed better than the subjects who had the AMI surgery but not the e-OPRA implant, and much better than users of traditional prostheses.

“This paper represents the fulfillment of a vision that the scientific community has had for a long time — the implementation and demonstration of a fully physiologically integrated, volitionally controlled robotic leg,” says Michael Goldfarb, a professor of mechanical engineering and director of the Center for Intelligent Mechatronics at Vanderbilt University, who was not involved in the research. “This is really difficult work, and the authors deserve tremendous credit for their efforts in realizing such a challenging goal.”

A sense of embodiment

In addition to testing gait and other movements, the researchers also asked questions designed to evaluate participants’ sense of embodiment — that is, to what extent their prosthetic limb felt like a part of their own body.

Questions included whether the patients felt as if they had two legs, if they felt as if the prosthesis was part of their body, and if they felt in control of the prosthesis. Each question was designed to evaluate the participants’ feelings of agency, ownership of device, and body representation.

The researchers found that as the study went on, the two participants with the OMP showed much greater increases in their feelings of agency and ownership than the other subjects.

“Another reason this paper is significant is that it looks into these embodiment questions and it shows large improvements in that sensation of embodiment,” Herr says. “No matter how sophisticated you make the AI systems of a robotic prosthesis, it’s still going to feel like a tool to the user, like an external device. But with this tissue-integrated approach, when you ask the human user what is their body, the more it’s integrated, the more they’re going to say the prosthesis is actually part of self.”

The AMI procedure is now done routinely on patients with below-the-knee amputations at Brigham and Women’s Hospital, and Herr expects it will soon become the standard for above-the-knee amputations as well. The combined OMP system will need larger clinical trials to receive FDA approval for commercial use, which Herr expects may take about five years.

The research was funded by the Yang Tan Collective and DARPA.

MIT’s McGovern Institute and Department of Brain and Cognitive Sciences welcome new faculty member Sven Dorkenwald

The McGovern Institute and the Department of Brain and Cognitive Sciences are pleased to announce the appointment of Sven Dorkenwald as an assistant professor starting in January 2026. A trailblazer in the field of computational neuroscience, Dorkenwald is recognized for his leadership in connectomics—an emerging discipline focused on reconstructing and analyzing neural circuitry at unprecedented scale and detail. 

“We are thrilled to welcome Sven to MIT” says McGovern Institute Director Robert Desimone. “He brings visionary science and a collaborative spirit to a rapidly advancing area of brain and cognitive sciences and his appointment strengthens MIT’s position at the forefront of brain research.” 

Dorkenwald’s research is driven by a bold vision: to develop and apply cutting-edge computational methods that reveal how brain circuits are organized and how they give rise to complex computations. His innovative work has led to transformative advances in the reconstruction of connectomes (detailed neural maps) from nanometer-scale electron microscopy images. He has championed open team science and data sharing and played a central role in producing the first connectome of an entire fruit fly brain—a groundbreaking achievement that is reshaping our understanding of sensory processing and brain circuit function. 

Sven is a rising leader in computational neuroscience who has already made significant contributions toward advancing our understanding of the brain,” says Michale Fee, the Glen V. and Phyllis F. Dorflinger Professor of Neuroscience, and Department Head of Brain and Cognitive Sciences. “He brings a combination of technical expertise, a collaborative mindset, and a strong commitment to open science that will be invaluable to our department. I’m pleased to welcome him to our community and look forward to the impact he will have.” 

Dorkenwald earned his BS in physics in 2014 and MS in computer engineering in 2017 from the University of Heidelberg, Germany. He began his research in connectomics as an undergraduate in the group of Winfried Denk at the Max Planck Institute for Medical Research and Max Planck Institute of Neurobiology.  Dorkenwald went on to complete his PhD at Princeton University in 2023, where he studied both computer science and neuroscience under the mentorship of Sebastian Seung and Mala Murthy. 

All 139,255 neurons in the brain of an adult fruit fly reconstructed by the FlyWire Consortium, with each neuron uniquely color-coded. Render by Tyler Sloan. Image: Sven Dorkenwald

As a PhD student at Princeton, Dorkenwald spearheaded the FlyWire Consortium, a group of more than 200 scientists, gamers, and proofreaders who combined their skills to create the fruit fly connectome. More than 20 million scientific images of the adult fruit fly brain  were added to an AI model that traced each neuron and synapse in exquisite detail. Members of the consortium then checked the results produced by the AI model and pieced them together into a complete, three-dimensional map. With over 140,000 neurons, it is the most complex brain completely mapped to date. The findings were published in a special issue of Nature in 2024. 

Dorkenwald’s work also played a key role in the MICrONS’ consortium effort to reconstruct a cubic millimeter connectome of the mouse visual cortex. Within the MICrONS effort, he co-lead the development of the software infrastructure, CAVE, that enables scientists to collaboratively edit and analyze large connectomics datasets, including FlyWire’s. The findings of the MICrONS consortium were published in a special issue of Nature in 2025. 

Dorkenwald is currently a Shanahan Fellow at the Allen Institute and the University of Washington. He also serves as a visiting faculty researcher at Google Research, where he has been developing machine learning approaches for the annotation of cell reconstructions as part of the Neuromancer team led by Viren Jain.  

As an investigator at the McGovern Institute and an assistant professor in the department of brain and cognitive sciences at MIT, Dorkenwald  plans to develop computational approaches to overcome challenges in scaling connectomics to whole mammalian brains with the goal of advancing our mechanistic understanding of neuronal circuits and analyzing how they compare across regions and species. 

 

Feng Zhang elected to EMBO membership

The European Molecular Biology Organization (EMBO), a professional non-profit organization dedicated to promoting international research in life sciences, announced its new members today. Among the 69 new members recognized for their outstanding achievements is Feng Zhang, the James and Patricia Poitras Professor of Neuroscience at MIT and an investigator at the McGovern Institute.

Zhang, who is also a core member of the Broad Institute, a professor of brain and cognitive sciences and biological engineering at MIT, and a Howard Hughes Medical Institute investigator, is a molecular biologist focused on improving human health. He played an integral role in pioneering the use of CRISPR-Cas9 for genome editing in human cells, including working with Stuart Orkin to develop Casgevy, the first CRISPR-based therapeutic approved for clinical use. His team is currently discovering new ways to modify cellular function and activity—including the restoration of diseased, stressed, or aged cells to a more healthful state.

Zhang has been elected to EMBO as an associate member, where he joins a community of more than 2,100 international life scientists that have demonstrated research excellence in their fields.

“A major strength of EMBO lies in the excellence and dedication of its members,” says EMBO Director Fiona Watt. “Science thrives on global collaboration, and the annual election of the new EMBO members and associate members brings fresh energy and inspiration to our community. We are honoured to welcome this remarkable group of scientists to the EMBO Membership. Their ideas and contributions will enrich the organization and help advance the life sciences internationally.”

The 60 new EMBO members in 2025 are based in 18 member states of the EMBC, the intergovernmental organization that funds the main EMBO programs and activities. The nine new EMBO associate members, including Zhang, are based in six countries outside Europe. In total, 29 (42%) of the new members are women and 40 (58%) are men.

The new members will be formally welcomed at the next EMBO Members’ Meeting in Heidelberg, Germany, on 22-24 October 2025.

Researchers present bold ideas for AI at MIT Generative AI Impact Consortium kickoff event

Launched in February of this year, the MIT Generative AI Impact Consortium (MGAIC), a presidential initiative led by MIT’s Office of Innovation and Strategy and administered by the MIT Stephen A. Schwarzman College of Computing, issued a call for proposals, inviting researchers from across MIT to submit ideas for innovative projects studying high-impact uses of generative AI models.

The call received 180 submissions from nearly 250 faculty members, spanning all of MIT’s five schools and the college. The overwhelming response across the Institute exemplifies the growing interest in AI and follows in the wake of MIT’s Generative AI Week and call for impact papers. Fifty-five proposals were selected for MGAIC’s inaugural seed grants, with several more selected to be funded by the consortium’s founding company members.

Over 30 funding recipients presented their proposals to the greater MIT community at a kickoff event on May 13. Anantha P. Chandrakasan, chief innovation and strategy officer and dean of the School of Engineering who is head of the consortium, welcomed the attendees and thanked the consortium’s founding industry members.

“The amazing response to our call for proposals is an incredible testament to the energy and creativity that MGAIC has sparked at MIT. We are especially grateful to our founding members, whose support and vision helped bring this endeavor to life,” adds Chandrakasan. “One of the things that has been most remarkable about MGAIC is that this is a truly cross-Institute initiative. Deans from all five schools and the college collaborated in shaping and implementing it.”

Vivek F. Farias, the Patrick J. McGovern (1959) Professor at the MIT Sloan School of Management and co-faculty director of the consortium with Tim Kraska, associate professor of electrical engineering and computer science in the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL), emceed the afternoon of five-minute lightning presentations.

Presentation highlights include:

“AI-Driven Tutors and Open Datasets for Early Literacy Education,” presented by Ola Ozernov-Palchik, a research scientist at the McGovern Institute for Brain Research, proposed a refinement for AI-tutors for pK-7 students to potentially decrease literacy disparities.

“Developing jam_bots: Real-Time Collaborative Agents for Live Human-AI Musical Improvisation,” presented by Anna Huang, assistant professor of music and assistant professor of electrical engineering and computer science, and Joe Paradiso, the Alexander W. Dreyfoos (1954) Professor in Media Arts and Sciences at the MIT Media Lab, aims to enhance human-AI musical collaboration in real-time for live concert improvisation.

“GENIUS: GENerative Intelligence for Urban Sustainability,” presented by Norhan Bayomi, a postdoc at the MIT Environmental Solutions Initiative and a research assistant in the Urban Metabolism Group, which aims to address the critical gap of a standardized approach in evaluating and benchmarking cities’ climate policies.

Georgia Perakis, the John C Head III Dean (Interim) of the MIT Sloan School of Management and professor of operations management, operations research, and statistics, who serves as co-chair of the GenAI Dean’s oversight group with Dan Huttenlocher, dean of the MIT Schwarzman College of Computing, ended the event with closing remarks that emphasized “the readiness and eagerness of our community to lead in this space.”

“This is only the beginning,” he continued. “We are at the front edge of a historic moment — one where MIT has the opportunity, and the responsibility, to shape the future of generative AI with purpose, with excellence, and with care.”

How the brain solves complicated problems

The human brain is very good at solving complicated problems. One reason for that is that humans can break problems apart into manageable subtasks that are easy to solve one at a time.

This allows us to complete a daily task like going out for coffee by breaking it into steps: getting out of our office building, navigating to the coffee shop, and once there, obtaining the coffee. This strategy helps us to handle obstacles easily. For example, if the elevator is broken, we can revise how we get out of the building without changing the other steps.

While there is a great deal of behavioral evidence demonstrating humans’ skill at these complicated tasks, it has been difficult to devise experimental scenarios that allow precise characterization of the computational strategies we use to solve problems.

In a new study, MIT researchers have successfully modeled how people deploy different decision-making strategies to solve a complicated task — in this case, predicting how a ball will travel through a maze when the ball is hidden from view. The human brain cannot perform this task perfectly because it is impossible to track all of the possible trajectories in parallel, but the researchers found that people can perform reasonably well by flexibly adopting two strategies known as hierarchical reasoning and counterfactual reasoning.

The researchers were also able to determine the circumstances under which people choose each of those strategies.

“What humans are capable of doing is to break down the maze into subsections, and then solve each step using relatively simple algorithms. Effectively, when we don’t have the means to solve a complex problem, we manage by using simpler heuristics that get the job done,” says Mehrdad Jazayeri, a professor of brain and cognitive sciences, a member of MIT’s McGovern Institute for Brain Research, an investigator at the Howard Hughes Medical Institute, and the senior author of the study.

Mahdi Ramadan PhD ’24 and graduate student Cheng Tang are the lead authors of the paper, which appears today in Nature Human Behavior. Nicholas Watters PhD ’25 is also a co-author.

Rational strategies

When humans perform simple tasks that have a clear correct answer, such as categorizing objects, they perform extremely well. When tasks become more complex, such as planning a trip to your favorite cafe, there may no longer be one clearly superior answer. And, at each step, there are many things that could go wrong. In these cases, humans are very good at working out a solution that will get the task done, even though it may not be the optimal solution.

Those solutions often involve problem-solving shortcuts, or heuristics. Two prominent heuristics humans commonly rely on are hierarchical and counterfactual reasoning. Hierarchical reasoning is the process of breaking down a problem into layers, starting from the general and proceeding toward specifics. Counterfactual reasoning involves imagining what would have happened if you had made a different choice. While these strategies are well-known, scientists don’t know much about how the brain decides which one to use in a given situation.

“This is really a big question in cognitive science: How do we problem-solve in a suboptimal way, by coming up with clever heuristics that we chain together in a way that ends up getting us closer and closer until we solve the problem?” Jazayeri says.

To overcome this, Jazayeri and his colleagues devised a task that is just complex enough to require these strategies, yet simple enough that the outcomes and the calculations that go into them can be measured.

The task requires participants to predict the path of a ball as it moves through four possible trajectories in a maze. Once the ball enters the maze, people cannot see which path it travels. At two junctions in the maze, they hear an auditory cue when the ball reaches that point. Predicting the ball’s path is a task that is impossible for humans to solve with perfect accuracy.

“It requires four parallel simulations in your mind, and no human can do that. It’s analogous to having four conversations at a time,” Jazayeri says. “The task allows us to tap into this set of algorithms that the humans use, because you just can’t solve it optimally.”

The researchers recruited about 150 human volunteers to participate in the study. Before each subject began the ball-tracking task, the researchers evaluated how accurately they could estimate timespans of several hundred milliseconds, about the length of time it takes the ball to travel along one arm of the maze.

For each participant, the researchers created computational models that could predict the patterns of errors that would be seen for that participant (based on their timing skill) if they were running parallel simulations, using hierarchical reasoning alone, counterfactual reasoning alone, or combinations of the two reasoning strategies.

The researchers compared the subjects’ performance with the models’ predictions and found that for every subject, their performance was most closely associated with a model that used hierarchical reasoning but sometimes switched to counterfactual reasoning.

That suggests that instead of tracking all the possible paths that the ball could take, people broke up the task. First, they picked the direction (left or right), in which they thought the ball turned at the first junction, and continued to track the ball as it headed for the next turn. If the timing of the next sound they heard wasn’t compatible with the path they had chosen, they would go back and revise their first prediction — but only some of the time.

Switching back to the other side, which represents a shift to counterfactual reasoning, requires people to review their memory of the tones that they heard. However, it turns out that these memories are not always reliable, and the researchers found that people decided whether to go back or not based on how good they believed their memory to be.

“People rely on counterfactuals to the degree that it’s helpful,” Jazayeri says. “People who take a big performance loss when they do counterfactuals avoid doing them. But if you are someone who’s really good at retrieving information from the recent past, you may go back to the other side.”

Human limitations

To further validate their results, the researchers created a machine-learning neural network and trained it to complete the task. A machine-learning model trained on this task will track the ball’s path accurately and make the correct prediction every time, unless the researchers impose limitations on its performance.

When the researchers added cognitive limitations similar to those faced by humans, they found that the model altered its strategies. When they eliminated the model’s ability to follow all possible trajectories, it began to employ hierarchical and counterfactual strategies like humans do. If the researchers reduced the model’s memory recall ability, it began to switch to hierarchical only if it thought its recall would be good enough to get the right answer — just as humans do.

“What we found is that networks mimic human behavior when we impose on them those computational constraints that we found in human behavior,” Jazayeri says. “This is really saying that humans are acting rationally under the constraints that they have to function under.”

By slightly varying the amount of memory impairment programmed into the models, the researchers also saw hints that the switching of strategies appears to happen gradually, rather than at a distinct cut-off point. They are now performing further studies to try to determine what is happening in the brain as these shifts in strategy occur.

The research was funded by a Lisa K. Yang ICoN Fellowship, a Friends of the McGovern Institute Student Fellowship, a National Science Foundation Graduate Research Fellowship, the Simons Foundation, the Howard Hughes Medical Institute, and the McGovern Institute.

How the brain distinguishes between ambiguous hypotheses

When navigating a place that we’re only somewhat familiar with, we often rely on unique landmarks to help make our way. However, if we’re looking for an office in a brick building, and there are many brick buildings along our route, we might use a rule like looking for the second building on a street, rather than relying on distinguishing the building itself.

Man seated on staircase, smiling at camera
McGovern Investigator Mark Harnett. Photo: Adam Glanzman

Until that ambiguity is resolved, we must hold in mind that there are multiple possibilities (or hypotheses) for where we are in relation to our destination. In a study of mice, MIT neuroscientists have now discovered that these hypotheses are explicitly represented in the brain by distinct neural activity patterns.

This is the first time that neural activity patterns that encode simultaneous hypotheses have been seen in the brain. The researchers found that these representations, which were observed in the brain’s retrosplenial cortex (RSC), not only encode hypotheses but also could be used by the animals to choose the correct way to go.

“As far as we know, no one has shown in a complex reasoning task that there’s an area in association cortex that holds two hypotheses in mind and then uses one of those hypotheses, once it gets more information, to actually complete the task,” says Mark Harnett, an associate professor of brain and cognitive sciences, a member of MIT’s McGovern Institute for Brain Research, and the senior author of the study.

Jakob Voigts PhD ’17, a former postdoc in Harnett’s lab and now a group leader at the Howard Hughes Medical Institute Janelia Research Campus, is the lead author of the paper, which appears today in Nature Neuroscience.

Ambiguous landmarks

The RSC receives input from the visual cortex, the hippocampal formation, and the anterior thalamus, which it integrates to help guide navigation.

In a 2020 paper, Harnett’s lab found that the RSC uses both visual and spatial information to encode landmarks used for navigation. In that study, the researchers showed that neurons in the RSC of mice integrate visual information about the surrounding environment with spatial feedback of the mice’s own position along a track, allowing them to learn where to find a reward based on landmarks that they saw.

In their new study, the researchers wanted to delve further into how the RSC uses spatial information and situational context to guide navigational decision-making. To do that, the researchers devised a much more complicated navigational task than typically used in mouse studies. They set up a large, round arena, with 16 small openings, or ports, along the side walls. One of these openings would give the mice a reward when they stuck their nose through it. In the first set of experiments, the researchers trained the mice to go to different reward ports indicated by dots of light on the floor that were only visible when the mice get close to them.

Man in blue shirt wearing glasses building a platform in a lab setting.
Jakob Voigts PhD ’17, at work in Mark Harnett’s lab. Photo: Justin Knight

Once the mice learned to perform this relatively simple task, the researchers added a second dot. The two dots were always the same distance from each other and from the center of the arena. But now the mice had to go to the port by the counterclockwise dot to get the reward. Because the dots were identical and only became visible at close distances, the mice could never see both dots at once and could not immediately determine which dot was which.

To solve this task, mice therefore had to remember where they expected a dot to show up, integrating their own body position, the direction they were heading, and path they took to figure out which landmark is which. By measuring RSC activity as the mice approached the ambiguous landmarks, the researchers could determine whether the RSC encodes hypotheses about spatial location. The task was carefully designed to require the mice to use the visual landmarks to obtain rewards, instead of other strategies like odor cues or dead reckoning.

“What is important about the behavior in this case is that mice need to remember something and then use that to interpret future input,” says Voigts, who worked on this study while a postdoc in Harnett’s lab.

“It’s not just remembering something, but remembering it in such a way that you can act on it.” – Jakob Voigts

The researchers found that as the mice accumulated information about which dot might be which, populations of RSC neurons displayed distinct activity patterns for incomplete information. Each of these patterns appears to correspond to a hypothesis about where the mouse thought it was with respect to the reward.

When the mice get close enough to figure out which dot was indicating the reward port, these patterns collapsed into the one that represents the correct hypothesis. The findings suggest that these patterns not only passively store hypotheses, they can also be used to compute how to get to the correct location, the researchers say.

“We show that RSC has the required information for using this short-term memory to distinguish the ambiguous landmarks. And we show that this type of hypothesis is encoded and processed in a way that allows the RSC to use it to solve the computation,” Voigts says.

Interconnected neurons

When analyzing their initial results, Harnett and Voigts consulted with MIT Professor Ila Fiete, who had run a study about 10 years ago using an artificial neural network to perform a similar navigation task.

That study, previously published on bioRxiv, showed that the neural network displayed activity patterns that were conceptually similar to those seen in the animal studies run by Harnett’s lab. The neurons of the artificial neural network ended up forming highly interconnected low-dimensional networks, like the neurons of the RSC.

“That interconnectivity seems, in ways that we still don’t understand, to be key to how these dynamics emerge and how they’re controlled. And it’s a key feature of how the RSC holds these two hypotheses in mind at the same time,” Harnett says.

In his lab at Janelia, Voigts now plans to investigate how other brain areas involved in navigation, such as the prefrontal cortex, are engaged as mice explore and forage in a more naturalistic way, without being trained on a specific task.

“We’re looking into whether there are general principles by which tasks are learned,” Voigts says. “We have a lot of knowledge in neuroscience about how brains operate once the animal has learned a task, but in comparison we know extremely little about how mice learn tasks or what they choose to learn when given freedom to behave naturally.”

The research was funded, in part, by the National Institutes of Health, a Simons Center for the Social Brain at MIT postdoctoral fellowship, the National Institute of General Medical Sciences, and the Center for Brains, Minds, and Machines at MIT, funded by the National Science Foundation.