New center for autism research established at the McGovern Institute

The McGovern Institute is pleased to announce the establishment of a new center dedicated to autism research. The center is made possible by a kick-off commitment of $20 million, made by Lisa Yang and MIT alumnus Hock Tan ’75.

The Hock E. Tan and K. Lisa Yang Center for Autism Research will support research on the genetic, biological and neural bases of autism spectrum disorders, a developmental disability estimated to affect 1 in 68 individuals in the United States. Tan and Yang hope their initial investment will stimulate additional support and help foster collaborative research efforts to erase the devastating effects of this disorder on individuals, their families and the broader autism community.

“With the Tan-Yang Center for Autism Research, we can imagine a world in which medical science understands and supports those with autism — and we can focus MIT’s distinctive strengths on making that dream a reality. Lisa and Hock’s gift reminds us of the impact we envision for the MIT Campaign for a Better World.  I am grateful for their leadership and generosity, and inspired by the possibilities ahead,” says MIT President L. Rafael Reif.

“I am thrilled to be investing in an institution that values a multidisciplinary collaborative approach to solving complex problems such as autism,” says Hock Tan, who graduated from MIT in 1975 with a bachelor’s degree and master’s degree in mechanical engineering. “We expect that successful research originating from our Center will have a significant impact on the autism community.”

Originally from Penang, Malaysia, Tan has held several high-level finance and executive positions since leaving MIT. Tan is currently CEO of chipmaker Broadcom, Ltd.

Research at the Tan-Yang Center will focus on four major lines of investigation: genetics, neural circuits, novel autism models and the translation of basic research to the clinical setting.  By focusing research efforts on the origins of autism in our genes, in the womb and in the first years of life, the Tan-Yang Center aims to develop methods to better detect and potentially prevent autism spectrum disorders entirely. To help meet this challenge, the Center will support collaborations across multiple disciplines—from genes to neural circuits—both within and beyond MIT.

“MIT has some of the world’s leading scientists studying autism,” says McGovern Institute director Robert Desimone. “Support from the Tan-Yang Center will enable us to pursue exciting new directions that could not be funded by traditional sources. We will exploit revolutionary new tools, such as CRISPR and optogenetics, that are transforming research in neuroscience. We hope to not only identify new targets for medicines, but also develop novel treatments that are not based on standard pharmacological approaches. By supporting cutting-edge autism research here at MIT as well as our collaborative institutions, the Center holds great promise to accelerate our basic understanding of this complex disorder.”

“Millions of families have been impacted by autism,” says Yang, a longtime advocate for the rights of individuals with disabilities and learning differences. “I am profoundly hopeful that the discoveries made at the Tan-Yang Center will have a long-term impact on the field of autism research and will provide fresh answers and potential new treatments for individuals affected by this disorder.”

Feng Zhang named James and Patricia Poitras Professor in Neuroscience

The McGovern Institute for Brain Research at MIT has announced the appointment of Feng Zhang as the inaugural chairholder of the James and Patricia Poitras (1963) Professorship in Neuroscience. This new endowed professorship was made possible through a generous gift by Patricia and James Poitras ’63. The professorship is the second endowed chair Mr. and Mrs. Poitras have established at MIT, and extends their longtime support for mental health research.

“This newly created chair further enhances all that Jim and Pat have done for mental illness research at MIT,” said Robert Desimone, director of the McGovern Institute. “The Poitras Center for Affective Disorders Research has galvanized psychiatric research in multiple labs at MIT, and this new professorship will grant critical support to Professor Zhang’s genome engineering technologies, which continue to significantly advance mental illness research in labs worldwide.”

James and Patricia Poitras founded the Poitras Center for Affective Disorders Research at MIT in 2007. The Center has enabled dozens of advances in mental illness research, including the development of new disease models and novel technologies. Partnerships between the center and McLean Hospital have also resulted in improved methods for predicting and treating psychiatric disorders. In 2003, the Poitras Family established the James W. (1963) and Patricia T. Poitras Professor of Neuroscience in MIT’s Department of Brain and Cognitive Sciences, currently held by Guoping Feng.

“Providing support for high-risk, high-reward projects that have the potential to significantly impact individuals living with mental illness has been immensely rewarding to us,” Mr. and Mrs. Poitras say. “We are most interested in bringing basic scientific research to bear on new treatment options for psychiatric diseases. The work of Feng Zhang and his team is immeasurably promising to us and to the field of brain disorders research.”

Zhang joined MIT in 2011 as an investigator in the McGovern Institute for Brain Research and an assistant professor in the departments of Brain and Cognitive Sciences and Biological Engineering. In 2013, he was named the W.M. Keck Career Development Professor in Biomedical Engineering, and in 2016 he was awarded tenure. In addition to his roles at MIT, Zhang is a core member of the Broad Institute of Harvard and MIT.

“I am deeply honored to be named the first James and Patricia Poitras Professor in Neuroscience,” says Zhang. “The Poitras Family and I share a passion for researching, treating, and eventually curing major mental illness. This chair is a terrific recognition of my group’s dedication to advancing genomic and molecular tools to research and one day solve psychiatric illness.”

Zhang earned his BA in chemistry and physics from Harvard College and his PhD in chemistry from Stanford University. Zhang has received numerous awards for his work in genome editing, especially the CRISPR gene editing system, and optogenetics. These include the Perl-UNC Neuroscience Prize, the National Science Foundation’s Alan T. Waterman Award, the Jacob Heskel Gabbay Award in Biotechnology and Medicine, the Society for Neuroscience’s Young Investigator Award, the Okazaki Award, the Canada Gairdner International Award, and the Tang Prize. Zhang is a founder of Editas Medicine, a genome editing company founded by world leaders in the fields of genome editing, protein engineering, and molecular and structural biology.

Monumental new sculpture commissioned for MIT’s McGovern Institute

The newest addition to MIT’s Public Art Collection is now on permanent display at the McGovern Institute for Brain Research at 550 Main Street in Kendall Square, Cambridge, Massachusetts. “SCIENTIA,” a monumental bronze sculpture by Ursula von Rydingsvard is a gift from Lore Harp McGovern and represents the 52nd piece of public art on campus. The new work will be dedicated in a public ceremony on Friday, Oct. 28 at 5 p.m., followed by a free artist talk at 6 p.m. in the Singleton Auditorium (Room 46-3002).

“’SCIENTIA’ represents that art and science are not separate entities,” says Lore Harp McGovern, co-founder of the McGovern Institute and a member of the Council for the Arts at MIT. “Art defines our humanity, advances our curiosity, and forces us to ask big questions — questions the McGovern Institute for Brain Research is trying to answer. ‘SCIENTIA’ invites you in.”

Von Rydingsvard’s “SCIENTIA” is among her most ambitious sculptures to date, at approximately 24 feet tall and over 17,000 pounds. In creating the work, the artist first produced a wood model in her studio using 4×4-inch cedar beams milled for the construction industry.  Using circular saws and a range of cutting tools, she sliced, marked, and shaped the wood elements, then stacked them to create layers that were glued and screwed into place. The full-scale wood model was then transported to Polich Tallix Fine Art Foundry (founded by Richard Polich SM ’65), where the majority of the sculpture was sand cast while the delicate filigree sections were cast using the lost-wax technique. Von Rydingsvard patinated the bronze surface by hand with chemicals and a blow torch.

For over 30 years, von Rydingsvard has been making monumental sculptures that reveal the trace of the human hand and resemble objects and environments that echo the artist’s family heritage in pre-industrial Poland. The artist’s childhood was marked by the strain of living in eight different refugee camps over the course of five years. Her earliest recollections — of displacement and subsistence through humble means — infuse her work with emotional potency. Von Rydingsvard has built towering cedar structures, creating intricate networks of individual beams, shaped by sharp and lyrical cuts and fused together to form rich, dynamic surfaces. While abstract at its core, von Rydingsvard’s work takes visual cues from the landscape, the human body, and utilitarian objects — such as the artist’s collection of household vessels — and demonstrates an interest in the point where the human-made meets nature.

“Ursula von Rydingsvard’s commissioned piece for the McGovern is a fantastic addition to MIT’s great public art collection,” List Visual Arts Center Director Paul C. Ha says. “This powerful sculpture will inspire many and will be one of the signature pieces in our collection. We’re grateful for Ms. McGovern’s thoughtfulness and her generosity in helping us acquire this magnificent piece for MIT.”

View the SCIENTIA photo gallery >>

Faculty at MIT and beyond respond forcefully to an article critical of Suzanne Corkin

On August 7, 2016, the New York Times Magazine published “The Brain That Couldn’t Remember,” an article adapted from the forthcoming book “Patient H.M.: A Story of Memory, Madness, and Family Secrets,” by Luke Dittrich. The article is highly critical of the late Suzanne Corkin, who was a professor emerita of neuroscience until her death on May 24.

In response to the article, more than 200 members of the international scientific community — most from outside MIT — have signed a letter in support of Corkin and her research with the amnesic patient Henry Molaison.

What follows is a statement by James DiCarlo, the Peter de Florez Professor of Neuroscience and head of the Department of Brain and Cognitive Sciences at MIT.

***

In “The Brain That Couldn’t Remember,” three allegations are made against Professor Suzanne Corkin, who died on May 24. Professors John Gabrieli and Nancy Kanwisher at MIT have examined evidence in relation to each allegation, and, as detailed below, have found significant evidence that contradicts each allegation. In our judgment, the evidence below rebuts each claim.

1. Allegation that research records were or would be destroyed or shredded.

We believe that no records were destroyed and, to the contrary, that Professor Corkin worked in her final days to organize and preserve all records. Even as her health failed (she had advanced cancer and was receiving chemotherapy), she instructed her assistant to continue to organize, label, and maintain all records related to Henry Molaison. The records currently remain within our department.

Assuming that the interview is accurately and fully reported by Mr. Dittrich, we cannot explain why Professor Corkin made the comments reported in the article. This may have been related to tensions between the author and Professor Corkin because she had turned down his request to examine Mr. Molaison’s confidential medical and research records.

Regardless, the critical point is not what was said in an interview, but rather what actions were actually taken by Professor Corkin. The actions were to preserve the records.

2. Allegation that the finding of an additional lesion in left orbitofrontal cortex was suppressed.

The public record is clear that Professor Corkin communicated this discovery of an additional lesion in Mr. Molaison to both scientific and public audiences. This factual evidence is contradictory to any allegation of the suppression of a finding.

The original scientific report (Nature Communications, 2014) of the post-mortem examination of Mr. Molaison’s brain included this information in the most prominent and widely read portion of the report, the abstract.

In addition, Professor Corkin herself disseminated this information in public forums, including a 2014 interview, posted on MIT News and subsequently elsewhere online, in which she said: “We discovered a new lesion in the lateral orbital gyrus of the left frontal lobe. This damage was also visible in the postmortem MRI scans. The etiology of this lesion is presently unknown; future histological studies will clarify the cause and timeframe of this damage. Currently, it is unclear whether this lesion had any consequence for H.M.’s behavior.”

3. Allegation that there was something inappropriate in the selection of Tom Mooney as Mr. Molaison’s guardian.

In her book “Permanent Present Tense” (2013), Professor Corkin describes precisely the provenance of Mr. Molaison’s guardianship (page 201).

Briefly, in 1974 Mr. Molaison and his mother (who was in failing health; his father was deceased) moved in with Lillian Herrick, whose first husband was related to Mr. Molaison’s mother. Mrs. Herrick is described as caring for Mr. Molaison until 1980, when she was diagnosed with advanced cancer, and Mr. Molaison was admitted to a nursing home founded by her brother.

In 1991, the Probate Court in Windsor Locks, Connecticut, appointed Mrs. Herrick’s son, Tom Mooney, as Mr. Molaison’s conservator. (Mr. Mooney is referred to as “Mr. M” in the book because of his desire for privacy.) This family took an active interest in helping Mr. Molaison and his mother, and was able to help place him in the nursing home that took care of him.

Mr. Dittrich provides no evidence that anything untoward occurred, and we are not aware of anything untoward in this process. Mr. Dittrich identifies some individuals who were genetically closer to Mr. Molaison than Mrs. Herrick or her son, but it is our understanding that this family took in Mr. Molaison and his mother, and took care of Mr. Molaison for many years. Mr. Mooney was appointed conservator by the local court after a valid legal process, which included providing notice of a hearing and appointment of counsel to Mr. Molaison.

Journalists are absolutely correct to hold scientists to very high standards. I — and over 200 scientists who have signed a letter to the editor in support of Professor Corkin — believe she more than achieved those high standards. However, the author (and, implicitly, the Times) has failed to do so.

James J. DiCarlo MD, PhD
Peter de Florez Professor of Neuroscience
Head, Department of Brain and Cognitive Sciences
Investigator, McGovern Institute for Brain Research
Massachusetts Institute of Technology

Schwerpunkt

There’s a new focal point at the McGovern Institute and it’s called Schwerpunkt. From the German word meaning “main focus” or “focal point,” Schwerpunkt is a suspended anamorphic neuron sculpture by Ralph Helmick.

Anamorphosisis a distorted image that becomes recognizable only when viewed from a particular point. The word anamorphosis originates from the Greek words anamorphoun (to transform) and morphe (form, shape). Examples of anamorphic art date back to the early Renaissance, with Leonardo’s Eye (Leonardo da Vinci, c. 1485) being the first example of perspective anamorphosis in modern times.

In Schwerpunkt, one hundred gold neurons seemingly float at random above the McGovern Institute lobby and make a beautiful transformation at the focal point on the third floor atrium level. This sculpture is made possible by a gift from Hugo Shong in memory of Patrick J. McGovern.

Photos from the June 28 opening of Schwerpunkt may be viewed below.

Feng Zhang named 2016 Tang Prize Laureate

Feng Zhang, a core institute member of the Broad Institute, an investigator at the McGovern Institute for Brain Research at MIT, and W. M. Keck Career Development Associate Professor in MIT’s Department of Brain and Cognitive Sciences with a joint appointment in Biological Engineering, has been named a 2016 Tang Prize Laureate in Biopharmaceutical Science for his role in developing the CRISPR-Cas9 gene-editing system and demonstrating pioneering uses in eukaryotic cells.

The Tang Prize is a biennial international award granted by judges convened by Academia Sinica, Taiwan’s top academic research institution.

In January 2013 Zhang and his team were first to report CRISPR-based genome editing in mammalian cells, in what has become the most-cited paper in the CRISPR field. Zhang shares the award with Emmanuelle Charpentier of the Max Planck Institute and Jennifer A. Doudna of the University of California at Berkeley.

“To be recognized with the Tang Prize is an incredible honor for our team and it demonstrates the impact of the entire CRISPR field, which began with microbiologists and will continue for years to come as we advance techniques for genome editing,” Zhang said. “Thanks to the scientific community’s commitment to collaboration and an emphasis on sharing across institutions and borders, the last few years have seen a revolution in our ability to understand cancer, autoimmune disease, mental health and infectious disease. We are entering a remarkable period in our understanding of human health.”

Although Zhang is well-known for his work with CRISPR, the 34-year-old scientist has a long track record of innovation. As a graduate student at Stanford University, Zhang worked with Karl Deisseroth and Edward Boyden, who is now also a professor at MIT, to develop optogenetics, in which neuronal activity can be controlled with light. The three shared the Perl-UNC Prize in Neuroscience in 2012 as recognition of these efforts. Zhang has also received the National Science Foundation’s Alan T. Waterman Award (2014), the Jacob Heskel Gabbay Award in Biotechnology and Medicine (2014, shared with Charpentier and Doudna), the Tsuneko & Reiji Okazaki Award (2015), the Human Genome Organization (HUGO) Chen New Investigator Award (2016), and the Canada Gairdner International Award (2016, shared with Charpentier and Doudna, as well as Rodolphe Barrangou from North Carolina State University and Philippe Horvath from DuPont Nutrition & Health).

One of Zhang’s long-term goals is to use genome-editing technologies to better understand the nervous system and develop new approaches to the treatment of neurological and psychiatric diseases. The Zhang lab has shared CRISPR-Cas9 components in response to more than 30,000 requests from academic laboratories around the world and has trained thousands of researchers in the use of CRISPR-Cas9 genome-editing technology through in-person events and online opportunities. In his current research, he and his students and postdoctoral fellows continue to improve and expand the gene-editing toolbox.

“Professor Zhang’s lab has become a global hub for CRISPR research,” said MIT Provost Martin Schmidt. “His group has shared CRISPR-Cas9 components with tens of thousands of scientists, and has trained many more in the use of CRISPR-Cas9 technology. The Tang Prize is a fitting recognition of all that Professor Zhang has done, and continues to do, to advance this field.”

“CRISPR is a powerful new tool that is transforming biological science while promising revolutionary advances in health care,” said Michael Sipser, dean of the School of Science and Donner Professor of Mathematics at MIT. “We are delighted that Feng Zhang, together with Jennifer Doudna and Emmanuelle Charpentier, have been recognized with the Tang Prize.”

“It is wonderful that the Academia Sinica has chosen to recognize the CRISPR field with this year’s Tang Prize,” said Eric Lander, founding director of the Broad Institute. “On behalf of my colleagues at the Broad and MIT, I wish to congratulate Feng, as well as Emmanuelle Charpentier and Jennifer Doudna, along with the many teams of scientists and all others who have contributed to these transformational discoveries.”

Founded in 2012 by Samuel Yin, the Tang Prize is a non-governmental, non-profit educational foundation that awards outstanding contributions in four fields: sustainable development, biopharmaceutical science, sinology, and rule of law. Nomination and selection of laureates is conducted by the Academia Sinica. Each award cycle, the academy convenes four autonomous selection committees, each consisting of an assembly of international experts, until a consensus on the recipients is reached. Recipients are chosen on the basis of the originality of their work along with their contributions to society, irrespective of nationality, ethnicity, gender, and political affiliation.

This year marks the second awarding of the prize. This year’s awardees will receive the medal, diploma, and cash prize at an award ceremony on September 25 in Taipei. Recipients in each Tang Prize category receive a total of approximately $1.24 million (USD) and a grant of approximately $311,000 (USD). The cash prize and grants are divided equally among joint recipients in each category.

 

McGovern Institute for Brain Research hosts Chinese delegation

On Thursday May 12, the McGovern Institute for Brain Research at MIT hosted a visiting delegation from China, headed by the Party Secretary of Guangdong Province, Hu Chunhua (Chinese: 胡春华 ) and also including the Mayor of Shenzhen, Xu Qin (Chinese: 许勤 ), the Chinese Ambassador to the US, Cui Tiankai (Chinese: 崔天凯 ) and the Consul-General to New York, Zhang Qiyue (Chinese: 章启月 ). The visitors met with McGovern Director Robert Desimone and faculty members H. Robert Horvitz and Guoping Feng, and listened to presentations on the McGovern Institute’s collaboration with neuroscience researchers at the Shenzhen Institute of Advanced Technology (SIAT). The director of SIAT, Fan Jianping (Chinese: 樊建平 ) also attended the meeting, and they discussed the potential for future collaborations and the commercial development of new therapeutics for brain disease in Guangdong.

Robert Desimone, the McGovern Director, said “It was an honor to have Party Secretary Hu Chunhua and his delegation visit the McGovern Institute. He expressed his sincere concern for the many people suffering from brain disease, ranging from autism to Alzheimer’s disease. We believe our collaborative projects in Guangdong Province offer real hope.” The delegation later toured the MIT Media Lab and met with MIT Provost Martin Schmidt.

Feng Zhang receives 2016 Canada Gairdner International Award

Feng Zhang, a core institute member of the Broad Institute, an investigator at the McGovern Institute for Brain Research at MIT, and W. M. Keck Career Development Associate Professor in MIT’s Department of Brain and Cognitive Sciences, has been named a recipient of the 2016 Canada Gairdner International Award — Canada’s most prestigious scientific prize — for his role in developing the CRISPR-Cas9 gene-editing system.

In January 2013 Zhang and his team were first to report CRISPR-based genome editing in mammalian cells, in what has become the most-cited paper in the CRISPR field. He is one of five scientists the Gairdner Foundation is honoring for work with CRISPR. Zhang shares the award with Rodolphe Barrangou from North Carolina State University; Emmanuelle Charpentier of the Max Planck Institute; Jennifer Doudna of the University of California at Berkeley and Phillipe Horvath from DuPont Nutrition and Health.

“The Gairdner Award is a tremendous recognition for my entire team, and it is a great honor to share this recognition with other pioneers in the CRISPR field,” Zhang says. “In the next decade, the understanding and the discoveries that scientists are going to be able to make using the CRISPR-Cas9 system will lead to new innovations that will translate into new therapeutics and new products that can benefit our lives.”

Although Zhang is well-known for his work with CRISPR, the 34-year-old scientist has a long track record of innovation. As a graduate student at Stanford University, Zhang worked with Karl Deisseroth and Edward Boyden, who is now also a professor at MIT, to develop optogenetics, in which neuronal activity can be controlled with light. The three shared the Perl-UNC Prize in Neuroscience in 2012 as recognition of these efforts. Zhang has also received the National Science Foundation’s Alan T. Waterman Award (2014), the Jacob Heskel Gabbay Award in Biotechnology and Medicine (2014, shared with Charpentier and Doudna), the Tsuneko & Reiji Okazaki Award (2015), and the Human Genome Organization (HUGO) Chen New Investigator Award (2016).

One of Zhang’s long-term goals is to use genome-editing technologies to better understand the nervous system and develop new approaches to the treatment of psychiatric disease. The Zhang lab has shared CRISPR-Cas9 components in response to nearly 30,000 requests from academic laboratories around the world and has trained thousands of researchers in the use of CRISPR-Cas9 genome-editing technology through in-person events and online opportunities. In his current research, he continues to improve and expand the gene-editing toolbox. “I feel incredibly fortunate and excited to work with an incredible team of students and postdocs to continue advancing our ability to edit and understand the genome,” Zhang says.

“CRISPR is a revolutionary breakthrough that will advance the frontiers of science and enable us to meet the health challenges of the 21st century in ways we are only beginning to imagine,” says Michael Sipser, dean of MIT’s School of Science and the Barton L. Weller Professor of Mathematics. “I am exceedingly proud of the contributions Feng has made to MIT and the greater community of scientists, and extend my heartfelt congratulations to him and his colleagues.”

“CRISPR is a great example of how the scientific community can come together and make stunning progress in a short period of time,” says Eric Lander, founding director of the Broad Institute. “On behalf of my colleagues at the Broad and MIT, I wish to congratulate Feng and all the winners of this prestigious award, as well as the teams of scientists and all others who have contributed to these transformational discoveries.”

The Canada Gairdner International Awards, created in 1959, are given annually to recognize and reward the achievements of medical researchers whose work contributes significantly to the understanding of human biology and disease. The awards provide a $100,000 (CDN) prize to each scientist for their work. Each year, the five honorees of the International Awards are selected after a rigorous two-part review, with the winners voted by secret ballot by a medical advisory board composed of 33 eminent scientists from around the world.

The Broad Institute of MIT and Harvard was launched in 2004 to empower this generation of creative scientists to transform medicine. The Broad Institute seeks to describe all the molecular components of life and their connections; discover the molecular basis of major human diseases; develop effective new approaches to diagnostics and therapeutics; and disseminate discoveries, tools, methods, and data openly to the entire scientific community.

Founded by MIT, Harvard, Harvard-affiliated hospitals, and the visionary Los Angeles philanthropists Eli and Edythe L. Broad, the Broad Institute includes faculty, professional staff, and students from throughout the MIT and Harvard biomedical research communities and beyond, with collaborations spanning over a hundred private and public institutions in more than 40 countries worldwide. For further information about the Broad Institute, visit: http://www.broadinstitute.org.

McGovern Institute awards prize to neurogeneticist Cori Bargmann

The McGovern Institute for Brain Research at MIT announced today that Cornelia Bargmann of The Rockefeller University is the winner of the 2016 Edward M. Scolnick Prize in Neuroscience. The Prize is awarded annually by the McGovern Institute to recognize outstanding advances in any field of neuroscience. Bargmann is recognized for her work on the genetic and neural mechanisms that control behavior in the nematode Caenorhabditis elegans.

Bargmann is currently the Torsten N. Wiesel Professor at The Rockefeller University and an investigator of the Howard Hughes Medical Institute. She was a faculty member at University of California, San Francisco for 13 years before moving to Rockefeller in 2004.

Bargmann received her Ph.D. from MIT, where she studied with Robert Weinberg, making important contributions to cancer biology including the identification of the HER2/neu oncogene that is now an important target for the treatment of breast cancer. For her postdoctoral studies, she joined the MIT laboratory of H. Robert Horvitz, now a McGovern investigator, where she began to study the nervous system of the microscopic nematode worm C. elegans. With just 302 neurons, whose connections are known, C. elegans is ideally suited for understanding the genetic and neural mechanisms that control behavior, with a level of precision not possible in more complex organisms. At MIT, Bargmann demonstrated that worms can sense volatile odors via specific chemosensory neurons, and she identified genes that affected the animals’ responses to specific odorants, setting the stage for a genetic analysis of chemosensory behavior that she subsequently pursued in her own lab at UCSF and The Rockefeller University.

Among Bargmann’s important early contributions was the demonstration in 1996 that the gene odr-10 encodes an odorant receptor (OR) that is specific for diacetyl, a volatile compound that gives butter its distinct smell and to which worms are strongly attracted. Although putative ORs had been identified in other species, it had proved difficult to identify specific ligands for individual receptors, and Bargmann’s discovery, the first example in any species, opened many new research directions. In one especially elegant experiment, she and her team were able to drive expression of odr-10 in another sensory neuron that normally responds to repulsive odors, causing the worms to avoid the previously attractive diacetyl. This experiment provides one of the most compelling demonstrations of the “labeled line” hypothesis, in which the response to a sensory stimulus is determined not by the inherent properties of the stimulus itself but by the identity of the neuronal connection that transmits the signal.

This work was followed by detailed studies of the mechanisms by which worms sense and respond flexibly to chemical cues in their environment, in which Bargmann and her colleagues traced the flow of information from sensory inputs to motor outputs through circuits of identified neurons. Bargmann also provided a clear demonstration of learning in worms, showing that animals exposed to pathogenic bacteria can learn to avoid odorants associated with the pathogen. Interestingly, this avoidance response is mediated by the neurotransmitter serotonin, which is also plays important role in mammalian nausea, suggesting an ancient conserved mechanism for conditioned food aversion.

Building on her olfaction work, Bargmann has also studied the neural basis of social behavior, which in worms is strongly regulated by chemical cues. In one set of papers, for example, she identified a single neuron that integrates information from multiple chemical cues including food, oxygen and pheromones, to control the expression of social behavior. Bargmann’s work has encompassed many other areas of neuroscience, and by combining behavioral analysis with genetic manipulations and laser ablation of individual identified cells, she has revealed the diverse genetic and cellular mechanisms through which a simple nervous system can produce a wide range of behaviors.

Bargmann has received many awards and honors for her work, including the Kavli Neuroscience Prize and the Breakthrough Prize for Life Sciences. She has been elected to both the American Academy of Arts and Sciences and the National Academy of Sciences, and she served as co-chair of the advisory committee for the NIH BRAIN initiative.

The McGovern Institute will award the Scolnick Prize to Dr. Bargmann on Wednesday March 30, 2016. At 4.00 pm she will deliver a lecture entitled “Genes, neurons, circuits and behavior:  an integrated approach in a compact brain,” to be followed by a reception, at the McGovern Institute in the Brain and Cognitive Sciences Complex, 43 Vassar Street (building 46, room 3002) in Cambridge. The event is free and open to the public.

About the Edward M. Scolnick Prize in Neuroscience
The Scolnick Prize, awarded annually by the McGovern Institute, is named in honor of Dr. Edward M. Scolnick, who stepped down as President of Merck Research Laboratories in December 2002 after holding Merck’s top research post for 17 years. Dr. Scolnick is now a core member of the Broad Institute, where he is chief scientist at the Stanley Center for Psychiatric Research. He also serves as a member of the McGovern Institute’s governing board. The prize, which is endowed through a gift from Merck to the McGovern Institute, consists of a $125,000 award, plus an inscribed gift. Previous winners are Charles Gilbert (The Rockefeller University), Huda Zoghbi (Baylor College of Medicine), Thomas Jessell (Columbia University), Roger Nicoll (University of California, San Francisco), Bruce McEwen (The Rockefeller University), Lily and Yuh-Nung Jan (University of California, San Francisco), Jeremy Nathans (Johns Hopkins University), Michael Davis (Emory University), David Julius (University of California, San Francisco), Michael Greenberg (Harvard Medical School), Judith Rapoport (National Institute of Mental Health) and Mark Konishi (California Institute of Technology).

Edward Boyden wins BBVA Foundation Frontiers of Knowledge Award

Edward S. Boyden, a professor of media arts and sciences, biological engineering, and brain and cognitive sciences at MIT, has won the BBVA Foundation Frontiers of Knowledge Award in Biomedicine for his role in the development of optogenetics, a technique for controlling brain activity with light. Gero Miesenböck of the University of Oxford and Karl Deisseroth of Stanford University were also honored with the prize for their role in developing and refining the technique.

The BBVA Foundation Frontiers of Knowledge Awards are given annually for “outstanding contributions and radical advances in a broad range of scientific, technological and artistic areas.” The €400.000 prize in the category of biomedicine will be shared among the three neuroscientists.

“If we imagine the brain as a computer, optogenetics is a keyboard that allows us to send extremely precise commands,” says Boyden, a a faculty member at the MIT Media Lab with a joint appointment at MIT’s McGovern Institute for Brain Research. “It is a tool whereby we can control the brain with exquisite precision.”

Boyden joins an illustrious list of prize laureates including physicist Stephen Hawking and artificial intelligence pioneer Marvin Minsky of MIT, who died on January 24.

The BBVA Foundation will host the winners at an awards ceremony on June 21, 2016 at the foundation’s headquarters in Madrid, Spain.

About the BBVA Foundation Frontiers of Knowledge Awards

The BBVA Foundation promotes, funds and disseminates world-class scientific research and artistic creation, in the conviction that science, culture and knowledge hold the key to better opportunities for all world citizens. The Foundation designs and implements its programs in partnership with some of the leading scientific and cultural organizations in Spain and abroad, striving to identify and prioritize those projects with the power to significantly advance the frontiers of the known world.

The juries in each of eight categories are made up of leading international experts in their respective fields, who arrive at their decisions in a wholly independent manner, applying internationally recognized metrics of excellence. The BBVA Foundation is aided in the organization of the awards by the Spanish National Research Council (CSIC).