Partnership with MIT Museum explores relationship between neuroscience and society

What does a healthy relationship between neuroscience and society look like? How do we set the conditions for that relationship to flourish? Researchers and staff at the McGovern Institute and the MIT Museum have been exploring these questions with a five-month planning grant from the Dana Foundation.

Between October 2022 and March 2023, the team tested the potential for an MIT Center for Neuroscience and Society through a series of MIT-sponsored events that were attended by students and faculty of nearby Cambridge Public Schools. The goal of the project was to learn more about what happens when the distinct fields of neuroscience, ethics, and public engagement are brought together to work side-by-side.

Researchers assist volunteer in mock MRI scanner
Gabrieli lab members Sadie Zacharek (left) and Shruti Nishith (right) demonstrate how the MRI mock scanner works with a student volunteer from the Cambridge Public Schools. Photo: Emma Skakel, MIT Museum

Middle schoolers visit McGovern

Over four days in February, more than 90 sixth graders from Rindge Avenue Upper Campus (RAUC) in Cambridge, Massachusetts, visited the McGovern Institute and participated in hands-on experiments and discussions about the ethical, legal, and social implications of neuroscience research. RAUC is one of four middle schools in the city of Cambridge with an economically, racially, and culturally diverse student population. The middle schoolers interacted with an MIT team led by McGovern Scientific Advisor Jill R. Crittenden, including seventeen McGovern neuroscientists, three MIT Museum outreach coordinators, and neuroethicist Stephanie Bird, a member of the Dana Foundation planning grant team.

“It is probably the only time in my life I will see a real human brain.” – RAUC student

The students participated in nine activities each day, including trials of brain-machine interfaces, close-up examinations of preserved human brains, a tour of McGovern’s imaging center in which students watched as their teacher’s brain was scanned, and a visit to the MIT Museum’s interactive Artificial Intelligence Gallery.

Imagine-IT, a brain-machine interface designed by a team of middle school students during a visit to the McGovern Institute.

To close out their visit, students worked in groups alongside experts to invent brain-computer interfaces designed to improve or enhance human abilities. At each step, students were introduced to ethical considerations through consent forms, questions regarding the use of animal and human brains, and the possible impacts of their own designs on individuals and society.

“I admit that prior to these four days, I would’ve been indifferent to the inclusion of children’s voices in a discussion about technically complex ethical questions, simply because they have not yet had any opportunity to really understand how these technologies work,” says one researcher involved in the visit. “But hearing the students’ questions and ideas has changed my perspective. I now believe it is critically important that all age groups be given a voice when discussing socially relevant issues, such as the ethics of brain computer interfaces or artificial intelligence.”

 

For more information on the proposed MIT Center for Neuroscience and Society, visit the MIT Museum website.

2023 MacVicar Faculty Fellows named

The Office of the Vice Chancellor and the Registrar’s Office have announced this year’s Margaret MacVicar Faculty Fellows: professor of brain and cognitive sciences John Gabrieli, associate professor of literature Marah Gubar, professor of biology Adam C. Martin, and associate professor of architecture Lawrence “Larry” Sass.

For more than 30 years, the MacVicar Faculty Fellows Program has recognized exemplary and sustained contributions to undergraduate education at MIT. The program is named in honor of Margaret MacVicar, the first dean for undergraduate education and founder of the Undergraduate Research Opportunities Program (UROP). New fellows are chosen every year through a competitive nomination process that includes submission of letters of support from colleagues, students, and alumni; review by an advisory committee led by the vice chancellor; and a final selection by the provost. Fellows are appointed to a 10-year term and receive $10,000 per year of discretionary funds.

Gabrieli, Gubar, Martin, and Sass join an elite group of more than 130 scholars from across the Institute who are committed to curricular innovation, excellence in teaching, and supporting students both in and out of the classroom.

John Gabrieli

“When I learned of this wonderful honor, I felt gratitude — for how MIT values teaching and learning, how my faculty colleagues bring such passion to their teaching, and how the students have such great curiosity for learning,” says new MacVicar Fellow John Gabrieli.

Gabrieli PhD ’87 received a bachelor’s degree in English from Yale University and his PhD in behavioral neuroscience from MIT. He is the Grover M. Hermann Professor in the Department of Brain and Cognitive sciences. Gabrieli is also an investigator in the McGovern Institute for Brain Research and the founding director of the MIT Integrated Learning Initiative (MITili). He holds appointments in the Department of Psychiatry at Massachusetts General Hospital and the Harvard Graduate School of Education, and studies the organization of memory, thought, and emotion in the human brain.

He joined Course 9 as a professor in 2005 and since then, he has taught over 3,000 undergraduates through the department’s introductory course, 9.00 (Introduction to Psychological Science). Gabrieli was recognized with departmental awards for excellence in teaching in 2009, 2012, and 2015. Highly sought after by undergraduate researchers, the Gabrieli Laboratory (GabLab) hosts five to 10 UROPs each year.

A unique element of Gabrieli’s classes is his passionate, hands-on teaching style and his use of interactive demonstrations, such as optical illusions and personality tests, to help students grasp some of the most fundamental topics in psychology.

His former teaching assistant Daniel Montgomery ’22 writes, “I was impressed by his enthusiasm and ability to keep students engaged throughout the lectures … John clearly has a desire to help students become excited about the material he’s teaching.”

Senior Elizabeth Carbonell agrees: “The excitement professor Gabrieli brought to lectures by starting with music every time made the classroom an enjoyable atmosphere conducive to learning … he always found a way to make every lecture relatable to the students, teaching psychological concepts that would shine a light on our own human emotions.”

Lecturer and 9.00 course coordinator Laura Frawley says, “John constantly innovates … He uses research-based learning techniques in his class, including blended learning, active learning, and retrieval practice.” His findings on blended learning resulted in two MITx offerings including 9.00x (Learning and Memory), which utilizes a nontraditional approach to assignments and exams to improve how students retrieve and remember information.

In addition, he is known for being a devoted teacher who believes in caring for the student as a whole. Through MITili’s Mental Wellness Initiative, Gabrieli, along with a compassionate team of faculty and staff, are working to better understand how mental health conditions impact learning.

Associate department head and associate professor of brain and cognitive sciences Josh McDermott calls him “an exceptional educator who has left his mark on generations of MIT undergraduate students with his captivating, innovative, and thoughtful approach to teaching.”

Mariana Gomez de Campo ’20 concurs: “There are certain professors that make their mark on students’ lives; professor Gabrieli permanently altered the course of mine.”

Laura Schulz, MacVicar Fellow and associate department head of brain and cognitive sciences, remarks, “His approach is visionary … John’s manner with students is unfailingly gracious … he hastens to remind them that they are as good as it gets, the smartest and brightest of their generation … it is the kind of warm, welcoming, inclusive approach to teaching that subtly but effectively reminds students that they belong here at MIT … It is little wonder that they love him.”

Marah Gubar

Marah Gubar joined MIT as an associate professor of literature in 2014. She received her BA in English literature from the University of Michigan at Ann Arbor and a PhD from Princeton University. Gubar taught in the English department at the University of Pittsburgh and served as director of the Children’s Literature Program. She received MIT’s James A. and Ruth Levitan Teaching Award in 2019 and the Teaching with Digital Technology Award in 2020.

Gubar’s research focuses on children’s literature, history of children’s theater, performance, and 19th- and 20th-century representations of childhood. Her research and pedagogies underscore the importance of integrated learning.

Colleagues at MIT note her efficacy in introducing new concepts and new subjects into the literature curriculum during her tenure as curricular chair. Gubar set the stage for wide-ranging curricular improvements, resulting in a host of literature subjects on interrelated topics within and across disciplines.

Gubar teaches several classes, including 21L.452 (Literature and Philosophy) and 21L.500 (How We Got to Hamilton). Her lectures provide uniquely enriching learning experiences in which her students are encouraged to dive into literary texts; craft thoughtful, persuasive arguments; and engage in lively intellectual debate.

Gubar encourages others to bring fresh ideas and think outside the box. For example, her seminar on “Hamilton” challenges students to recontextualize the hip-hop musical in several intellectual traditions. Professor Eric Klopfer, head of the Comparative Media Studies Program/Writing and interim head of literature, calls Gubar “a thoughtful, caring instructor, and course designer … She thinks critically about whose story is being told and by whom.”

MacVicar Fellow and professor of literature Stephen Tapscott praises her experimentation, abstract thinking, and storytelling: “Professor Gubar’s ability to frame intellectual questions in terms of problems, developments, and performance is an important dimension of the genius of her teaching.”

“Marah is hands-down the most enthusiastic, effective, and engaged professor I had the pleasure of learning from at MIT,” writes one student. “She’s one of the few instructors I’ve had who never feels the need to reassert her place in the didactic hierarchy, but approaches her students as intellectual equals.”

Tapscott continues, “She welcomes participation in ways that enrich the conversation, open new modes of communication, and empower students as autonomous literary critics. In professor Gubar’s classroom we learn by doing … and that progress also includes ‘doing’ textual analysis, cultural history, and abstract literary theory.”

Gubar is also a committed mentor and student testimonials highlight her supportive approach. One of her former students remarked that Gubar “has a strong drive to be inclusive, and truly cares about ‘getting it right’ … her passion for literature and teaching, together with her drive for inclusivity, her ability to take accountability, and her compassion and empathy for her students, make [her] a truly remarkable teacher.”

On receiving this award Marah Gubar writes, “The best word I can think of to describe how I reacted to hearing that I had received this very overwhelming honor is ‘plotzing.’ The Yiddish verb ‘to plotz’ literally means to crack, burst, or collapse, so that captures how undone I was. I started to cry, because it suddenly struck me how much joy my father, Edward Gubar, would have taken in this amazing news. He was a teacher, too, and he died during the first phase of this terrible pandemic that we’re still struggling to get through.”

Adam C. Martin

Adam C. Martin is a professor and undergraduate officer in the Department of Biology. He studies the molecular mechanisms that underlie tissue form and function. His research interests include gastrulation, embryotic development, cytoskeletal dynamics, and the coordination of cellular behavior. Martin received his PhD from the University of California at Berkeley and his BS in biology (genetics) from Cornell University. Martin joined the Course 7 faculty in 2011.

“I am overwhelmed with gratitude knowing that this has come from our students. The fact that they spent time to contribute to a nomination is incredibly meaningful to me,” says Martin. “I want to also thank all of my faculty colleagues with whom I have taught, appreciate, and learned immensely from over the past 12 years. I am a better teacher because of them and inspired by their dedication.”

He is committed to undergraduate education, teaching several key department offerings including 7.06 (Cell Biology), 7.016 (Introductory Biology), 7.002 (Fundamentals of Experimental Molecular Biology), and 7.102 (Introduction to Molecular Biology Techniques).

Martin’s style combines academic and scientific expertise with creative elements like props and demonstrations. His “energy and passion for the material” is obvious, writes Iain Cheeseman, associate department head and the Herman and Margaret Sokol Professor of Biology. “In addition to creating engaging lectures, Adam went beyond the standard classroom requirements to develop videos and animations (in collaboration with the Biology MITx team) to illustrate core cell biological approaches and concepts.”

What sets Martin apart is his connection with students, his positive spirit, and his welcoming demeanor. Apolonia Gardner ’22 reflects on the way he helped her outside of class through his running group, which connects younger students with seniors in his lab. “Professor Martin was literally committed to ‘going the extra mile’ by inviting his students to join him on runs around the Charles River on Friday afternoons,” she says.

Amy Keating, department head and Jay A. Stein professor of biology, and professor of biological engineering, goes on to praise Martin’s ability to attract students to Course 7 and guide them through their educational experience in his role as the director of undergraduate studies. “He hosts social events, presides at our undergraduate research symposium and the department’s undergraduate graduation and awards banquet, and works with the Biology Undergraduate Student Association,” she says.

As undergraduate officer, Martin is involved in both advising and curriculum building. He mentors UROP students, serves as a first-year advisor, and is a current member of MIT’s Committee on the Undergraduate Program (CUP).

Martin also brings a commitment to diversity, equity, and inclusion (DEI) as evidenced by his creation of a DEI journal club in his lab so that students have a dedicated space to discuss issues and challenges. Course 7 DEI officer Hallie Dowling-Huppert writes that Martin “thinks deeply about how DEI efforts are created to ensure that department members receive the maximum benefit. Adam considers all perspectives when making decisions, and is extremely empathetic and caring towards his students.”

“He makes our world so much better,” Keating observes. “Adam is a gem.”

Lawrence “Larry” Sass

Larry Sass SM ’94, PhD ’00 is an associate professor in the Department of Architecture. He earned his PhD and SM in architecture at MIT, and has a BArch from Pratt Institute in New York City. Sass joined the faculty in the Department of Architecture in 2002. His work focuses on the delivery of affordable housing for low-income families. He was included in an exhibit titled “Home Delivery: Fabricating the Modern Dwelling” at the Museum of Modern Art in New York City.

Sass’s teaching blends computation with design. His two signature courses, 4.500 (Design Computation: Art, Objects and Space) and 4.501 (Tiny Fab: Advancements in Rapid Design and Fabrication of Small Homes), reflect his specialization in digitally fabricating buildings and furniture from machines.

Professor and head of architecture Nicholas de Monchaux writes, “his classes provide crucial instruction and practice with 3D modeling and computer-generated rendering and animation …  [He] links digital design to fabrication, in a process that invites students to define desirable design attributes of an object, develop a digital model, prototype it, and construct it at full scale.”

More generally, Sass’ approach is to help students build confidence in their own design process through hands-on projects. MIT Class of 1942 Professor John Ochsendorf, MacVicar Fellow, and founding director of the Morningside Academy for Design with appointments in the departments of architecture and civil and environmental engineering, confirms, “Larry’s teaching is a perfect embodiment of the ‘mens et manus’ spirit … [he] requires his students to go back and forth from mind and hand throughout each design project.”

Students say that his classes are a journey of self-discovery, allowing them to learn more about themselves and their own abilities. Senior Natasha Hirt notes, “What I learned from Larry was not something one can glean from a textbook, but a new way of seeing space … he tectonically shifted my perspective on buildings. He also shifted my perspective on myself. I’m a better designer for his teachings, and perhaps more importantly, I better understand how I design.”

Senior Izzi Waitz echoes this sentiment: “Larry emphasizes the importance of intentionally thinking through your designs and being confident in your choices … he challenges, questions, and prompts you so that you learn to defend and support yourself on your own.”

As a UROP coordinator, Sass assures students that the “sky is the limit” and all ideas are welcome. Postgraduate teaching fellow and research associate Myles Sampson says, “During the last year of my SM program, I assisted Larry in conducting a year-long UROP project … He structured the learning experience in a way that allowed the students to freely flex their design muscles: no idea was too outrageous.”

Sass is equally devoted to his students outside the classroom. In his role as head of house at MacGregor House, he lives in community with more than 300 undergraduates each year, providing academic guidance, creating residential programs and recreational activities, and ensuring that student wellness and mental health is a No. 1 priority.

Professor of architecture and MacVicar Fellow Les Norford says, “In two significant ways, Larry has been ahead of his time: combining digital representation and design with making and being alert to the well-being of his students.”

“In his kindness, he honors the memory of Margaret MacVicar, as well as the spirit of MIT itself,” Hirt concludes. “He is a designer, a craftsman, and an innovator. He is an inspiration and a compass.”

On receiving this award, Sass is full of excitement: “I love teaching and being part of the MIT community. I am grateful for the opportunity to be part of the MacVicar family of fellows.”

New collaboration aims to strengthen orthotic and prosthetic care in Sierra Leone

MIT’s K. Lisa Yang Center for Bionics has entered into a collaboration with the Government of Sierra Leone to strengthen the capabilities and services of that country’s orthotic and prosthetic (O&P) sector. Tens of thousands of people in Sierra Leone are in need of orthotic braces and artificial limbs, but access to such specialized medical care in this African nation is limited.

The agreement, reached between MIT, the Center for Bionics, and Sierra Leone’s Ministry of Health and Sanitation (MoHS), provides a detailed memorandum of understanding and intentions that will begin as a four-year program.  The collaborators aim to strengthen Sierra Leone’s O&P sector through six key objectives: data collection and clinic operations, education, supply chain, infrastructure, new technologies and mobile delivery of services.

Project Objectives

  1. Data Collection and Clinic Operations: collect comprehensive data on epidemiology, need, utilization, and access for O&P services across the country
  2. Education: create an inclusive education and training program for the people of Sierra Leone, to enable sustainable and independent operation of O&P services
  3. Supply Chain: establish supply chains for prosthetic and orthotic components, parts, and materials for fabrication of devices
  4. Infrastructure: prepare infrastructure (e.g., physical space, sufficient water, power and internet) to support increased production and services
  5. New Technologies: develop and translate innovative technologies with potential to improve O&P clinic operations and management, patient mobility, and the design or fabrication of devices
  6. Mobile Delivery: support outreach services and mobile delivery of care for patients in rural and difficult-to-reach areas

Working together, MIT’s bionics center and Sierra Leone’s MoHS aim to sustainably double the production and distribution of O&P services at Sierra Leone’s National Rehabilitation Centre and Bo Clinics over the next four years.

The team of MIT scientists who will be implementing this novel collaboration is led by Hugh Herr, MIT Professor of Media Arts and Sciences. Herr, himself a double amputee, serves as co-director of the K. Lisa Yang Center for Bionics, and heads the renowned Biomechatronics research group at the MIT Media Lab.

“From educational services, to supply chain, to new technology, this important MOU with the government of Sierra Leone will enable the Center to develop a broad, integrative approach to the orthotic and prosthetic sector within Sierra Leone, strengthening services and restoring much needed care to its citizens,” notes Professor Herr.

Sierra Leone’s Honorable Minister of Health Dr. Austin Demby also states: “As the Ministry of Health and Sanitation continues to galvanize efforts towards the attainment of Universal Health Coverage through the life stages approach, this collaboration will foster access, innovation and capacity building in the Orthotic and Prosthetic division. The ministry is pleased to work with and learn from MIT over the next four years in building resilient health systems, especially for vulnerable groups.”

“Our team at MIT brings together expertise across disciplines from global health systems to engineering and design,” added Francesca Riccio-Ackerman, the graduate student lead for the MIT Sierra Leone project. “This allows us to craft an innovative strategy with Sierra Leone’s Ministry of Health and Sanitation. Together we aim to improve available orthotic and prosthetic care for people with disabilities.”

The K. Lisa Yang Center for Bionics at the Massachusetts Institute of Technology pioneers transformational bionic interventions across a broad range of conditions affecting the body and mind. Based on fundamental scientific principles, the Center seeks to develop neural and mechanical interfaces for human-machine communications; integrate these interfaces into novel bionic platforms; perform clinical trials to accelerate the deployment of bionic products by the private sector; and leverage novel and durable, but affordable, materials and manufacturing processes to ensure equitable access to the latest bionic technology by all impacted individuals, especially those in developing countries. 

Sierra Leone’s Ministry of Health and Sanitation is responsible for health service delivery across the country, as well as regulation of the health sector to meet the health needs of its citizenry. 

For more information about this project, please visit: https://mitmedialab.info/prosforallproj2

 

Season’s Greetings from the McGovern Institute

This year’s holiday video (shown above) was inspired by Ev Fedorenko’s July 2022 Nature Neuroscience paper, which found similar patterns of brain activation and language selectivity across speakers of 45 different languages.

Universal language network

Ev Fedorenko uses the widely translated book “Alice in Wonderland” to test brain responses to different languages. Photo: Caitlin Cunningham

Over several decades, neuroscientists have created a well-defined map of the brain’s “language network,” or the regions of the brain that are specialized for processing language. Found primarily in the left hemisphere, this network includes regions within Broca’s area, as well as in other parts of the frontal and temporal lobes. Although roughly 7,000 languages are currently spoken and signed across the globe, the vast majority of those mapping studies have been done in English speakers as they listened to or read English texts.

To truly understand the cognitive and neural mechanisms that allow us to learn and process such diverse languages, Fedorenko and her team scanned the brains of speakers of 45 different languages while they listened to Alice in Wonderland in their native language. The results show that the speakers’ language networks appear to be essentially the same as those of native English speakers — which suggests that the location and key properties of the language network appear to be universal.

The many languages of McGovern

English may be the primary language used by McGovern researchers, but more than 35 other languages are spoken by scientists and engineers at the McGovern Institute. Our holiday video features 30 of these researchers saying Happy New Year in their native (or learned) language. Below is the complete list of languages included in our video. Expand each accordion to learn more about the speaker of that particular language and the meaning behind their new year’s greeting.

McGovern Fellows recognized with life sciences innovation award

McGovern Institute Fellows Omar Abudayyeh and Jonathan Gootenberg have been named the inaugural recipients of the Termeer Scholars Awards, which recognize “emerging biomedical researchers that represent the future of the biotechnology industry.” The Termeer Foundation is a nonprofit organization focused on connecting life science innovators and catalyzing the creation of new medicines.

“The Termeer Foundation is committed to championing emerging biotechnology leaders and finding people who want to solve the biggest problems in human health,” said Belinda Termeer, president of the Termeer Foundation. “By supporting researchers like Omar and Jonathan, we plant the seeds for future success in individuals who are preparing to make significant contributions in academia and industry.”

The Abudayyeh-Gootenberg lab is developing a suite of new tools to enable next-generation cellular engineering, with uses in basic research, therapeutics and diagnostics. Building off the revolutionary biology of natural biological systems, including mobile genetic elements and CRISPR systems, the team develops new approaches for understanding and manipulating genomes, transcriptomes and cellular fate. The technologies have broad applications, including in oncology, aging and genetic disease.

These tools have been adopted by researchers over the world and formed the basis for four companies that Abudayyeh and Gootenberg have co-founded. They will receive a $50,000 grant to support professional development, knowledge advancement and/or stakeholder engagement and will become part of The Termeer Foundation’s signature Network of Termeer Fellows (first-time CEOs and entrepreneurs) and Mentors (experienced industry leaders).

“The Termeer Foundation is working to improve the long odds of biotechnology by identifying and supporting future biotech leaders; if we help them succeed as leaders, we can help their innovations reach patients,” said Alan Waltws, co-founder of the Termeer Foundation. “While our Termeer Fellows program has supported first time CEOs and entrepreneurs for the past five years, our new Termeer Scholars program will provide much needed support to the researchers whose innovative ideas represent the future of the biotechnology industry – researchers like Omar and Jonathan.”

Abudayyeh and Gootenberg were honored at the Termeer Foundation’s annual dinner in Boston on June 16, 2022.

New research center focused on brain-body relationship established at MIT

The inextricable link between our brains and our bodies has been gaining increasing recognition among researchers and clinicians over recent years. Studies have shown that the brain-body pathway is bidirectional — meaning that our mental state can influence our physical health and vice versa. But exactly how the two interact is less clear.

A new research center at MIT, funded by a $38 million gift to the McGovern Institute for Brain Research from philanthropist K. Lisa Yang, aims to unlock this mystery by creating and applying novel tools to explore the multidirectional, multilevel interplay between the brain and other body organ systems. This gift expands Yang’s exceptional philanthropic support of human health and basic science research at MIT over the past five years.

“Lisa Yang’s visionary gift enables MIT scientists and engineers to pioneer revolutionary technologies and undertake rigorous investigations into the brain’s complex relationship with other organ systems,” says MIT President L. Rafael Reif.  “Lisa’s tremendous generosity empowers MIT scientists to make pivotal breakthroughs in brain and biomedical research and, collectively, improve human health on a grand scale.”

The K. Lisa Yang Brain-Body Center will be directed by Polina Anikeeva, professor of materials science and engineering and brain and cognitive sciences at MIT and an associate investigator at the McGovern Institute. The center will harness the power of MIT’s collaborative, interdisciplinary life sciences research and engineering community to focus on complex conditions and diseases affecting both the body and brain, with a goal of unearthing knowledge of biological mechanisms that will lead to promising therapeutic options.

“Under Professor Anikeeva’s brilliant leadership, this wellspring of resources will encourage the very best work of MIT faculty, graduate fellows, and research — and ultimately make a real impact on the lives of many,” Reif adds.

microscope image of gut
Mouse small intestine stained to reveal cell nucleii (blue) and peripheral nerve fibers (red).
Image: Polina Anikeeva, Marie Manthey, Kareena Villalobos

Center goals  

Initial projects in the center will focus on four major lines of research:

  • Gut-Brain: Anikeeva’s group will expand a toolbox of new technologies and apply these tools to examine major neurobiological questions about gut-brain pathways and connections in the context of autism spectrum disorders, Parkinson’s disease, and affective disorders.
  • Aging: CRISPR pioneer Feng Zhang, the James and Patricia Poitras Professor of Neuroscience at MIT and investigator at the McGovern Institute, will lead a group in developing molecular tools for precision epigenomic editing and erasing accumulated “errors” of time, injury, or disease in various types of cells and tissues.
  • Pain: The lab of Fan Wang, investigator at the McGovern Institute and professor of brain and cognitive sciences, will design new tools and imaging methods to study autonomic responses, sympathetic-parasympathetic system balance, and brain-autonomic nervous system interactions, including how pain influences these interactions.
  • Acupuncture: Wang will also collaborate with Hilda (“Scooter”) Holcombe, a veterinarian in MIT’s Division of Comparative Medicine, to advance techniques for documenting changes in brain and peripheral tissues induced by acupuncture in mouse models. If successful, these techniques could lay the groundwork for deeper understandings of the mechanisms of acupuncture, specifically how the treatment stimulates the nervous system and restores function.

A key component of the K. Lisa Yang Brain-Body Center will be a focus on educating and training the brightest young minds who aspire to make true breakthroughs for individuals living with complex and often devastating diseases. A portion of center funding will endow the new K. Lisa Yang Brain-Body Fellows Program, which will support four annual fellowships for MIT graduate students and postdocs working to advance understanding of conditions that affect both the body and brain.

Mens sana in corpore sano

“A phrase I remember reading in secondary school has always stuck with me: ‘mens sana in corpore sano’ ‘a healthy mind in a healthy body,’” says Lisa Yang, a former investment banker committed to advocacy for individuals with visible and invisible disabilities. “When we look at how stress, nutrition, pain, immunity, and other complex factors impact our health, we truly see how inextricably linked our brains and bodies are. I am eager to help MIT scientists and engineers decode these links and make real headway in creating therapeutic strategies that result in longer, healthier lives.”

“This center marks a once-in-a-lifetime opportunity for labs like mine to conduct bold and risky studies into the complexities of brain-body connections,” says Anikeeva, who works at the intersection of materials science, electronics, and neurobiology. “The K. Lisa Yang Brain-Body Center will offer a pathbreaking, holistic approach that bridges multiple fields of study. I have no doubt that the center will result in revolutionary strides in our understanding of the inextricable bonds between the brain and the body’s peripheral organ systems, and a bold new way of thinking in how we approach human health overall.”

A voice for change — in Spanish

Jessica Chomik-Morales had a bicultural childhood. She was born in Boca Raton, Florida, where her parents had come seeking a better education for their daughter than she would have access to in Paraguay. But when she wasn’t in school, Chomik-Morales was back in that small, South American country with her family. One of the consequences of growing up in two cultures was an early interest in human behavior. “I was always in observer mode,” Chomik-Morales says, recalling how she would tune in to the nuances of social interactions in order to adapt and fit in.

Today, that fascination with human behavior is driving Chomik-Morales as she works with MIT professor of cognitive science Laura Schulz and Walter A. Rosenblith Professor of Cognitive Neuroscience and McGovern Institute for Brain Research investigator Nancy Kanwisher as a post-baccalaureate research scholar, using functional brain imaging to investigate how the brain recognizes and understands causal relationships. Since arriving at MIT last fall, she’s worked with study volunteers to collect functional MRI (fMRI) scans and used computational approaches to interpret the images. She’s also refined her own goals for the future.

Jessica Chomik-Morales (right) with postdoctoral associate Héctor De Jesús-Cortés. Photo: Steph Stevens

She plans to pursue a career in clinical neuropsychology, which will merge her curiosity about the biological basis of behavior with a strong desire to work directly with people. “I’d love to see what kind of questions I could answer about the neural mechanisms driving outlier behavior using fMRI coupled with cognitive assessment,” she says. And she’s confident that her experience in MIT’s two-year post-baccalaureate program will help her get there. “It’s given me the tools I need, and the techniques and methods and good scientific practice,” she says. “I’m learning that all here. And I think it’s going to make me a more successful scientist in grad school.”

The road to MIT

Chomik-Morales’s path to MIT was not a straightforward trajectory through the U.S. school system. When her mom, and later her dad, were unable to return to the U.S., she started eight grade in the capital city of Asunción. It did not go well. She spent nearly every afternoon in the principal’s office, and soon her father was encouraging her to return to the United States. “You are an American,” he told her. “You have a right to the educational system there.”

Back in Florida, Chomik-Morales became a dedicated student, even while she worked assorted jobs and shuffled between the homes of families who were willing to host her. “I had to grow up,” she says. “My parents are sacrificing everything just so I can have a chance to be somebody. People don’t get out of Paraguay often, because there aren’t opportunities and it’s a very poor country. I was given an opportunity, and if I waste that, then that is disrespect not only to my parents, but to my lineage, to my country.”

As she graduated from high school and went on to earn a degree in cognitive neuroscience at Florida Atlantic University, Chomik-Morales found herself experiencing things that were completely foreign to her family. Though she spoke daily with her mom via WhatsApp, it was hard to share what she was learning in school or what she was doing in the lab. And while they celebrated her academic achievements, Chomik-Morales knew they didn’t really understand them. “Neither of my parents went to college,” she says. “My mom told me that she never thought twice about learning about neuroscience. She had this misconception that it was something that she would never be able to digest.”

Chomik-Morales believes that the wonders of neuroscience are for everybody. But she also knows that Spanish speakers like her mom have few opportunities to hear the kinds of accessible, engaging stories that might draw them in. So she’s working to change that. With support from the McGovern Institute, the National Science Foundation funded Science and Technology Center for Brains, Minds, and Machines, Chomik-Morales is hosting and producing a weekly podcast called “Mi Última Neurona” (“My Last Neuron”), which brings conversations with neuroscientists to Spanish speakers around the world.

Listeners hear how researchers at MIT and other institutions are exploring big concepts like consciousness and neurodegeneration, and learn about the approaches they use to study the brain in humans, animals, and computational models. Chomik-Morales wants listeners to get to know neuroscientists on a personal level too, so she talks with her guests about their career paths, their lives outside the lab, and often, their experiences as immigrants in the United States.

After recording an interview with Chomik-Morales that delved into science, art, and the educational system in his home country of Peru, postdoc Arturo Deza thinks “Mi Última Neurona” has the potential to inspire Spanish speakers in Latin America, as well immigrants in other countries. “Even if you’re not a scientist, it’s really going to captivate you and you’re going to get something out of it,” he says. To that point, Chomik-Morales’s mother has quickly become an enthusiastic listener, and even begun seeking out resources to learn more about the brain on her own.

Chomik-Morales hopes the stories her guests share on “Mi Última Neurona” will inspire a future generation of Hispanic neuroscientists. She also wants listeners to know that a career in science doesn’t have to mean leaving their country behind. “Gain whatever you need to gain from outside, and then, if it’s what you desire, you’re able to go back and help your own community,” she says. With “Mi Última Neurona,” she adds, she feels she is giving back to her roots.

Lindsay Case and Guangyu Robert Yang named 2022 Searle Scholars

MIT cell biologist Lindsay Case and computational neuroscientist Guangyu Robert Yang have been named 2022 Searle Scholars, an award given annually to 15 outstanding U.S. assistant professors who have high potential for ongoing innovative research contributions in medicine, chemistry, or the biological sciences.

Case is an assistant professor of biology, while Yang is an assistant professor of brain and cognitive sciences and electrical engineering and computer science, and an associate investigator at the McGovern Institute for Brain Research. They will each receive $300,000 in flexible funding to support their high-risk, high-reward work over the next three years.

Lindsay Case

Case arrived at MIT in 2021, after completing a postdoc at the University of Texas Southwestern Medical Center in the lab of Michael Rosen. Prior to that, she earned her PhD from the University of North Carolina at Chapel Hill, working in the lab of Clare Waterman at the National Heart Lung and Blood Institute.

Situated in MIT’s Building 68, Case’s lab studies how molecules within cells organize themselves, and how such organization begets cellular function. Oftentimes, molecules will assemble at the cell’s plasma membrane — a complex signaling platform where hundreds of receptors sense information from outside the cell and initiate cellular changes in response. Through her experiments, Case has found that molecules at the plasma membrane can undergo a process known as phase separation, condensing to form liquid-like droplets.

As a Searle Scholar, Case is investigating the role that phase separation plays in regulating a specific class of signaling molecules called kinases. Her team will take a multidisciplinary approach to probe what happens when kinases phase separate into signaling clusters, and what cellular changes occur as a result. Because phase separation is emerging as a promising new target for small molecule therapies, this work will help identify kinases that are strong candidates for new therapeutic interventions to treat diseases such as cancer.

“I am honored to be recognized by the Searle Scholars Program, and thrilled to join such an incredible community of scientists,” Case says. “This support will enable my group to broaden our research efforts and take our preliminary findings in exciting new directions. I look forward to better understanding how phase separation impacts cellular function.”

Guangyu Robert Yang

Before coming to MIT in 2021, Yang trained in physics at Peking University, obtained a PhD in computational neuroscience at New York University with Xiao-Jing Wang, and further trained as a postdoc at the Center for Theoretical Neuroscience of Columbia University, as an intern at Google Brain, and as a junior fellow at the Simons Society of Fellows.

His research team at MIT, the MetaConscious Group, develops models of mental functions by incorporating multiple interacting modules. They are designing pipelines to process and compare large-scale experimental datasets that span modalities ranging from behavioral data to neural activity data to molecular data. These datasets are then be integrated to train individual computational modules based on the experimental tasks that were evaluated such as vision, memory, or movement.

Ultimately, Yang seeks to combine these modules into a “network of networks” that models higher-level brain functions such as the ability to flexibly and rapidly learn a variety of tasks. Such integrative models are rare because, until recently, it was not possible to acquire data that spans modalities and brain regions in real time as animals perform tasks. The time is finally right for integrative network models. Computational models that incorporate such multisystem, multilevel datasets will allow scientists to make new predictions about the neural basis of cognition and open a window to a mathematical understanding the mind.

“This is a new research direction for me, and I think for the field too. It comes with many exciting opportunities as well as challenges. Having this recognition from the Searle Scholars program really gives me extra courage to take on the uncertainties and challenges,” says Yang.

Since 1981, 647 scientists have been named Searle Scholars. Including this year, the program has awarded more than $147 million. Eighty-five Searle Scholars have been inducted into the National Academy of Sciences. Twenty scholars have been recognized with a MacArthur Fellowship, known as the “genius grant,” and two Searle Scholars have been awarded the Nobel Prize in Chemistry. The Searle Scholars Program is funded through the Searle Funds at The Chicago Community Trust and administered by Kinship Foundation.

Seven from MIT elected to American Academy of Arts and Sciences for 2022

Seven MIT faculty members are among more than 250 leaders from academia, the arts, industry, public policy, and research elected to the American Academy of Arts and Sciences, the academy announced Thursday.

One of the nation’s most prestigious honorary societies, the academy is also a leading center for independent policy research. Members contribute to academy publications, as well as studies of science and technology policy, energy and global security, social policy and American institutions, the humanities and culture, and education.

Those elected from MIT this year are:

  • Alberto Abadie, professor of economics and associate director of the Institute for Data, Systems, and Society
  • Regina Barzilay, the School of Engineering Distinguished Professor for AI and Health
  • Roman Bezrukavnikov, professor of mathematics
  • Michale S. Fee, the Glen V. and Phyllis F. Dorflinger Professor and head of the Department of Brain and Cognitive Sciences
  • Dina Katabi, the Thuan and Nicole Pham Professor
  • Ronald T. Raines, the Roger and Georges Firmenich Professor of Natural Products Chemistry
  • Rebecca R. Saxe, the John W. Jarve Professor of Brain and Cognitive Sciences

“We are celebrating a depth of achievements in a breadth of areas,” says David Oxtoby, president of the American Academy. “These individuals excel in ways that excite us and inspire us at a time when recognizing excellence, commending expertise, and working toward the common good is absolutely essential to realizing a better future.”

Since its founding in 1780, the academy has elected leading thinkers from each generation, including George Washington and Benjamin Franklin in the 18th century, Maria Mitchell and Daniel Webster in the 19th century, and Toni Morrison and Albert Einstein in the 20th century. The current membership includes more than 250 Nobel and Pulitzer Prize winners.

Aging Brain Initiative awards fund five new ideas to study, fight neurodegeneration

Neurodegenerative diseases are defined by an increasingly widespread and debilitating death of nervous system cells, but they also share other grim characteristics: Their cause is rarely discernible and they have all eluded cures. To spur fresh, promising approaches and to encourage new experts and expertise to join the field, MIT’s Aging Brain Initiative (ABI) this month awarded five seed grants after a competition among labs across the Institute.

Founded in 2015 by nine MIT faculty members, the ABI promotes research, symposia, and related activities to advance fundamental insights that can lead to clinical progress against neurodegenerative conditions, such as Alzheimer’s disease, with an age-related onset. With an emphasis on spurring research at an early stage before it is established enough to earn more traditional funding, the ABI derives support from philanthropic gifts.

“Solving the mysteries of how health declines in the aging brain and turning that knowledge into effective tools, treatments, and technologies is of the utmost urgency given the millions of people around the world who suffer with no meaningful treatment options,” says ABI director and co-founder Li-Huei Tsai, the Picower Professor of Neuroscience in The Picower Institute for Learning and Memory and the Department of Brain and Cognitive Sciences. “We were very pleased that many groups across MIT were eager to contribute their expertise and creativity to that goal. From here, five teams will be able to begin testing their innovative ideas and the impact they could have.”

To address the clinical challenge of accurately assessing cognitive decline during Alzheimer’s disease progression and healthy aging, a team led by Thomas Heldt, associate professor of electrical and biomedical engineering in the Department of Electrical Engineering and Computer Science (EECS) and the Institute for Medical Engineering and Science, proposes to use artificial intelligence tools to bring diagnostics based on eye movements during cognitive tasks to everyday consumer electronics such as smartphones and tablets. By moving these capabilities to common at-home platforms, the team, which also includes EECS Associate Professor Vivian Sze, hopes to increase monitoring beyond what can only be intermittently achieved with high-end specialized equipment and dedicated staffing in specialists’ offices. The team will pilot their technology in a small study at Boston Medical Center in collaboration with neurosurgeon James Holsapple.

Institute Professor Ann Graybiel’s lab in the Department of Brain and Cognitive Sciences (BCS) and the McGovern Institute for Brain Research will test the hypothesis that mutations on a specific gene may lead to the early emergence of Alzheimer’s disease (AD) pathology in the striatum. That’s a a brain region crucial for motivation and movement that is directly and severely impacted by other neurodegenerative disorders including Parkinson’s and Huntington’s diseases, but that has largely been unstudied in Alzheimer’s. By editing the mutations into normal and AD-modeling mice, Research Scientist Ayano Matsushima and Graybiel hope to determine whether and how pathology, such as the accumulation of amyloid proteins, may result. Determining that could provide new insight into the progression of disease and introduce a new biomarker in a region that virtually all other studies have overlooked.

Numerous recent studies have highlighted a potential role for immune inflammation in Alzheimer’s disease. A team led by Gloria Choi, the Mark Hyman Jr. Associate Professor in BCS and The Picower Institute for Learning and Memory, will track one potential source of such activity by determining whether the brain’s meninges, which envelop the brain, becomes a means for immune cells activated by gut bacteria to circulate near the brain, where they may release signaling molecules that promote Alzheimer’s pathology. Working in mice, Choi’s lab will test whether such activity is prone to increase in Alzheimer’s and whether it contributes to disease.

A collaboration led by Peter Dedon, the Singapore Professor in MIT’s Department of Biological Engineering, will explore whether Alzheimer’s pathology is driven by dysregulation of transfer RNAs (tRNAs) and the dozens of natural tRNA modifications in the epitranscriptome, which play a key role in the process by which proteins are assembled based on genetic instructions. With Benjamin Wolozin of Boston University, Sherif Rashad of Tohoku University in Japan, and Thomas Begley of the State University of New York at Albany, Dedon will assess how the tRNA pool and epitranscriptome may differ in Alzheimer’s model mice and whether genetic instructions mistranslated because of tRNA dysregulation play a role in Alzheimer’s disease.

With her seed grant, Ritu Raman, the d’Arbeloff Assistant Professor of Mechanical Engineering, is launching an investigation of possible disruption of intercellular messages in amyotrophic lateral sclerosis (ALS), a terminal condition in which motor neuron causes loss of muscle control. Equipped with a new tool to finely sample interstitial fluid within tissues, Raman’s team will be able to monitor and compare cell-cell signaling in models of the junction between nerve and muscle. These models will be engineered from stem cells derived from patients with ALS. By studying biochemical signaling at the junction the lab hopes to discover new targets that could be therapeutically modified.

Major support for the seed grants, which provide each lab with $100,000, came from generous gifts by David Emmes SM ’76; Kathleen SM ’77, PhD ’86 and Miguel Octavio; the Estate of Margaret A. Ridge-Pappis, wife of the late James Pappis ScD ’59; the Marc Haas Foundation; and the family of former MIT President Paul Gray ’54, SM ’55, ScD ‘60, with additional funding from many annual fund donors to the Aging Brain Initiative Fund.