New integrative computational neuroscience center established at MIT’s McGovern Institute

With the tools of modern neuroscience, researchers can peer into the brain with unprecedented accuracy. Recording devices listen in on the electrical conversations between neurons, picking up the voices of hundreds of cells at a time. Genetic tools allow us to focus on specific types of neurons based on their molecular signatures. Microscopes zoom in to illuminate the brain’s circuitry, capturing thousands of images of elaborately branched dendrites. Functional MRIs detect changes in blood flow to map activity within a person’s brain, generating a complete picture by compiling hundreds of scans.

This deluge of data provides insights into brain function and dynamics at different levels – molecules, cells, circuits, and behavior — but the insights often remain compartmentalized in separate research silos. An innovative new center at MIT’s McGovern Institute aims to leverage them into powerful revelations of the brain’s inner workings.

The K. Lisa Yang Integrative Computational Neuroscience (ICoN) Center will create advanced mathematical models and computational tools to synthesize the deluge of data across scales and advance our understanding of the brain and mental health.

The center, funded by a $24 million donation from philanthropist Lisa Yang and led by McGovern Institute Associate Investigator Ila Fiete, will take a collaborative approach to computational neuroscience, integrating cutting-edge modeling techniques and data from MIT labs to explain brain function at every level, from the molecular to the behavioral.

“Our goal is that sophisticated, truly integrated computational models of the brain will make it possible to identify how ‘control knobs’ such as genes, proteins, chemicals, and environment drive thoughts and behavior, and to make inroads toward urgent unmet needs in understanding and treating brain disorders,” says Fiete, who is also a brain and cognitive sciences professor at MIT.

“Driven by technologies that generate massive amounts of data, we are entering a new era of translational neuroscience research,” says Yang, whose philanthropic investment in MIT research now exceeds $130 million. “I am confident that the multidisciplinary expertise convened by the ICoN center will revolutionize how we synthesize this data and ultimately understand the brain in health and disease.”

Connecting the data

It is impossible to separate the molecules in the brain from their effects on behavior – although those aspects of neuroscience have traditionally been studied independently, by researchers with vastly different expertise. The ICoN Center will eliminate the divides, bringing together neuroscientists and software engineers to deal with all types of data about the brain.

“The center’s highly collaborative structure, which is essential for unifying multiple levels of understanding, will enable us to recruit talented young scientists eager to revolutionize the field of computational neuroscience,” says Robert Desimone, director of the McGovern Institute. “It is our hope that the ICoN Center’s unique research environment will truly demonstrate a new academic research structure that catalyzes bold, creative research.”

To foster interdisciplinary collaboration, every postdoctoral fellow and engineer at the center will work with multiple faculty mentors. In order to attract young scientists and engineers to the field of computational neuroscience, the center will also provide four graduate fellowships to MIT students each year in perpetuity. Interacting closely with three scientific cores, engineers and fellows will develop computational models and technologies for analyzing molecular data, neural circuits, and behavior, such as tools to identify patterns in neural recordings or automate the analysis of human behavior to aid psychiatric diagnoses. These technologies and models will be instrumental in synthesizing data into knowledge and understanding.

Center priorities

In its first five years, the ICoN Center will prioritize four areas of investigation: episodic memory and exploration, including functions like navigation and spatial memory; complex or stereotypical behavior, such as the perseverative behaviors associated with autism and obsessive-compulsive disorder; cognition and attention; and sleep. Models of complex behavior will be created in collaboration with clinicians and researchers at Children’s Hospital of Philadelphia.

The goal, Fiete says, is to model the neuronal interactions that underlie these functions so that researchers can predict what will happen when something changes — when certain neurons become more active or when a genetic mutation is introduced, for example. When paired with experimental data from MIT labs, the center’s models will help explain not just how these circuits work, but also how they are altered by genes, the environment, aging, and disease. These focus areas encompass circuits and behaviors often affected by psychiatric disorders and neurodegeneration, and models will give researchers new opportunities to explore their origins and potential treatment strategies.

“Lisa Yang is focused on helping the scientific community realize its goals in translational research,” says Nergis Mavalvala, dean of the School of Science and the Curtis and Kathleen Marble Professor of Astrophysics. “With her generous support, we can accelerate the pace of research by connecting the data to the delivery of tangible results.”

 

Seven from MIT receive National Institutes of Health awards

On Oct. 5, the National Institutes of Health announced the names of 106 scientists who have been awarded grants through the High-Risk, High-Reward Research program to advance highly innovative biomedical and behavioral research. Seven of the recipients are MIT faculty members.

The High-Risk, High-Reward Research program catalyzes scientific discovery by supporting research proposals that, due to their inherent risk, may struggle in the traditional peer-review process despite their transformative potential. Program applicants are encouraged to pursue trailblazing ideas in any area of research relevant to the NIH’s mission to advance knowledge and enhance health.

“The science put forward by this cohort is exceptionally novel and creative and is sure to push at the boundaries of what is known,” says NIH Director Francis S. Collins. “These visionary investigators come from a wide breadth of career stages and show that groundbreaking science can happen at any career level given the right opportunity.”

New innovators

Four MIT researchers received New Innovator Awards, which recognize “unusually innovative research from early career investigators.” They are:

  • Pulin Li is a member at the Whitehead Institute for Biomedical Research and an assistant professor in the Department of Biology. Li combines approaches from synthetic biology, developmental biology, biophysics and systems biology to quantitatively understand the genetic circuits underlying cell-cell communication that creates multicellular behaviors.
  • Seychelle Vos, the Robert A. Swanson (1969) Career Development Professor of Life Sciences in the Department of Biology, studies the interplay of gene expression and genome organization. Her work focuses on understanding how large molecular machineries involved in genome organization and gene transcription regulate each others’ function to ultimately determine cell fate and identity.
  • Xiao Wang, the Thomas D. and Virginia Cabot Assistant Professor of Chemistry and a member of the Broad Institute of MIT and Harvard, aims to develop high-resolution and highly-multiplexed molecular imaging methods across multiple scales toward understanding the physical and chemical basis of brain wiring and function.
  • Alison Wendlandt is a Cecil and Ida Green Career Development Assistant Professor of Chemistry. Wendlandt focuses on the development of selective, catalytic reactions using the tools of organic and organometallic synthesis and physical organic chemistry. Mechanistic study plays a central role in the development of these new transformations.

Transformative researchers

Two MIT researchers have received Transformative Research Awards, which “promote cross-cutting, interdisciplinary approaches that could potentially create or challenge existing paradigms.” The recipients are:

  • Manolis Kellis is a professor of computer science at MIT in the area of computational biology, an associate member of the Broad Institute, and a principal investigator with MIT’s Computer Science and Artificial Intelligence Laboratory. He aims to further our understanding of the human genome by computational integration of large-scale functional and comparative genomics datasets.
  • Myriam Heiman is the Latham Family Career Development Associate Professor of Neuroscience in the Department of Brain and Cognitive Sciences and an investigator in the Picower Institute for Learning and Memory. Heiman studies the selective vulnerability and pathophysiology seen in two neurodegenerative diseases of the basal ganglia, Huntington’s disease, and Parkinson’s disease.

Together, Heiman, Kellis and colleagues will launch a five-year investigation to pinpoint what may be going wrong in specific brain cells and to help identify new treatment approaches for amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with motor neuron disease (FTLD/MND). The project will bring together four labs, including Heiman and Kellis’ labs at MIT, to apply innovative techniques ranging from computational, genomic, and epigenomic analyses of cells from a rich sample of central nervous system tissue, to precision genetic engineering of stem cells and animal models.

Pioneering researchers

  • Polina Anikeeva received a Pioneer Award, which “challenges investigators at all career levels to pursue new research directions and develop groundbreaking, high-impact approaches to a broad area of biomedical, behavioral, or social science.” Anikeeva is an MIT professor of materials science and engineering, a professor of brain and cognitive sciences, and a McGovern Institute for Brain Research associate investigator. She has established a research program that uniquely combines materials synthesis, device fabrication, neurophysiology, and animal models of behavior. Her group carries out projects that understand, invent, and design materials from the level of atoms to functional devices with applications in fundamental neuroscience.

The program is supported by the NIH Common Fund, which oversees programs that pursue major opportunities and gaps throughout the research enterprise that are of great importance to NIH and require collaboration across the agency to succeed. It issues four awards each year: the Pioneer Award, the New Innovator Award, the Transformative Research Award, and the Early Independence Award.

This year, NIH issued 10 Pioneer awards, 64 New Innovator awards, 19 Transformative Research awards (10 general, four ALS-related, and five Covid-19-related), and 13 Early Independence awards for 2021. Funding for the awards comes from the NIH Common Fund, the National Institute of General Medical Sciences, the National Institute of Mental Health, and the National Institute of Neurological Disorders and Stroke.

New bionics center established at MIT with $24 million gift

A deepening understanding of the brain has created unprecedented opportunities to alleviate the challenges posed by disability. Scientists and engineers are taking design cues from biology itself to create revolutionary technologies that restore the function of bodies affected by injury, aging, or disease – from prosthetic limbs that effortlessly navigate tricky terrain to digital nervous systems that move the body after a spinal cord injury.

With the establishment of the new K. Lisa Yang Center for Bionics, MIT is pushing forward the development and deployment of enabling technologies that communicate directly with the nervous system to mitigate a broad range of disabilities. The center’s scientists, clinicians, and engineers will work together to create, test, and disseminate bionic technologies that integrate with both the body and mind.

The center is funded by a $24 million gift to MIT’s McGovern Institute for Brain Research from philanthropist Lisa Yang, a former investment banker committed to advocacy for individuals with visible and invisible disabilities.

Portait of philanthropist Lisa Yang.
Philanthropist Lisa Yang is committed to advocacy for individuals with visible and invisible disabilities. Photo: Caitlin Cunningham

Her previous gifts to MIT have also enabled the establishment of the K. Lisa Yang and Hock E. Tan Center for Molecular Therapeutics in Neuroscience, Hock E. Tan and K. Lisa Yang Center for Autism Research, Y. Eva Tan Professorship in Neurotechnology, and the endowed K. Lisa Yang Post-Baccalaureate Program.

“The K. Lisa Yang Center for Bionics will provide a dynamic hub for scientists, engineers and designers across MIT to work together on revolutionary answers to the challenges of disability,” says MIT President L. Rafael Reif. “With this visionary gift, Lisa Yang is unleashing a powerful collaborative strategy that will have broad impact across a large spectrum of human conditions – and she is sending a bright signal to the world that the lives of individuals who experience disability matter deeply.”

An interdisciplinary approach

To develop prosthetic limbs that move as the brain commands or optical devices that bypass an injured spinal cord to stimulate muscles, bionic developers must integrate knowledge from a diverse array of fields—from robotics and artificial intelligence to surgery, biomechanics, and design. The K. Lisa Yang Center for Bionics will be deeply interdisciplinary, uniting experts from three MIT schools: Science, Engineering, and Architecture and Planning. With clinical and surgical collaborators at Harvard Medical School, the center will ensure that research advances are tested rapidly and reach people in need, including those in traditionally underserved communities.

To support ongoing efforts to move toward a future without disability, the center will also provide four endowed fellowships for MIT graduate students working in bionics or other research areas focused on improving the lives of individuals who experience disability.

“I am thrilled to support MIT on this major research effort to enable powerful new solutions that improve the quality of life for individuals who experience disability,” says Yang. “This new commitment extends my philanthropic investment into the realm of physical disabilities, and I look forward to the center’s positive impact on countless lives, here in the US and abroad.”

The center will be led by Hugh Herr, a professor of media arts and sciences at MIT’s Media Lab, and Ed Boyden, the Y. Eva Tan Professor of Neurotechnology at MIT, a professor of biological engineering, brain and cognitive sciences, and media arts and sciences, and an investigator at MIT’s McGovern Institute and the Howard Hughes Medical Institute.

A double amputee himself, Herr is a pioneer in the development of bionic limbs to improve mobility for those with physical disabilities. “The world profoundly needs relief from the disabilities imposed by today’s nonexistent or broken technologies. We must continually strive towards a technological future in which disability is no longer a common life experience,” says Herr. “I am thrilled that the Yang Center for Bionics will help to measurably improve the human experience for so many.”

Boyden, who is a renowned creator of tools to analyze and control the brain, will play a key role in merging bionics technologies with the nervous system. “The Yang Center for Bionics will be a research center unlike any other in the world,” he says. “A deep understanding of complex biological systems, coupled with rapid advances in human-machine bionic interfaces, mean we will soon have the capability to offer entirely new strategies for individuals who experience disability. It is an honor to be part of the center’s founding team.”

Center priorities

In its first four years, the K. Lisa Yang Center for Bionics will focus on developing and testing three bionic technologies:

  • Digital nervous system: to eliminate movement disorders caused by spinal cord injuries, using computer-controlled muscle activations to control limb movements while simultaneously stimulating spinal cord repair
  • Brain-controlled limb exoskeletons: to assist weak muscles and enable natural movement for people affected by stroke or musculoskeletal disorders
  • Bionic limb reconstruction: to restore natural, brain-controlled movements as well as the sensation of touch and proprioception (awareness of position and movement) from bionic limbs

A fourth priority will be developing a mobile delivery system to ensure patients in medically underserved communities have access to prosthetic limb services. Investigators will field test a system that uses a mobile clinic to conduct the medical imaging needed to design personalized, comfortable prosthetic limbs and to fit the prostheses to patients where they live. Investigators plan to initially bring this mobile delivery system to Sierra Leone, where thousands of people suffered amputations during the country’s 11-year civil war. While the population of persons with amputation continues to increase each year in Sierra Leone, today less than 10% of persons in need benefit from functional prostheses. Through the mobile delivery system, a key center objective is to scale up production and access of functional limb prostheses for Sierra Leoneans in dire need.

Portrait of Lisa Yang, Hugh Herr, Julius Maada Bio, and David Moinina Sengeh (from left to right).
Philanthropist Lisa Yang (far left) and MIT bionics researcher Hugh Herr (second from left) met with Sierra Leone’s President Julius Maada Bio (second from right) and Chief Innovation Officer for the Directorate of Science, Technology and Innovation, David Moinina Sengeh, to discuss the mobile clinic component of the new K. Lisa Yang Center for Bionics at MIT. Photo: David Moinina Sengeh

“The mobile prosthetics service fueled by the K. Lisa Yang Center for Bionics at MIT is an innovative solution to a global problem,” said Julius Maada Bio, President of Sierra Leone. “I am proud that Sierra Leone will be the first site for deploying this state-of-the-art digital design and fabrication process. As leader of a government that promotes innovative technologies and prioritizes human capital development, I am overjoyed that this pilot project will give Sierra Leoneans (especially in rural areas) access to quality limb prostheses and thus improve their quality of life.”

Together, Herr and Boyden will launch research at the bionics center with three other MIT faculty: Assistant Professor of Media Arts and Sciences Canan Dagdeviren, Walter A. Rosenblith Professor of Cognitive Neuroscience Nancy Kanwisher, and David H. Koch (1962) Institute Professor Robert Langer. They will work closely with three clinical collaborators at Harvard Medical School: orthopedic surgeon Marco Ferrone, plastic surgeon Matthew Carty, and Nancy Oriol, Faculty Associate Dean for Community Engagement in Medical Education.

“Lisa Yang and I share a vision for a future in which each and every person in the world has the right to live without a debilitating disability if they so choose,” adds Herr. “The Yang Center will be a potent catalyst for true innovation and impact in the bionics space, and I am overjoyed to work with my colleagues at MIT, and our accomplished clinical partners at Harvard, to make important steps forward to help realize this vision.”

School of Science welcomes new faculty

This fall, MIT welcomes new faculty members — six assistant professors and two tenured professors — to the departments of Biology; Brain and Cognitive Sciences; Chemistry; Earth, Atmospheric and Planetary Sciences; and Physics.

A physicist, Soonwon Choi is interested in dynamical phenomena that occur in strongly interacting quantum many-body systems far from equilibrium and designing their applications for quantum information science. He takes a variety of interdisciplinary approaches from analytic theory and numerical computations to collaborations on experiments with controlled quantum degrees of freedom. Recently, Choi’s research has encompassed studying the phenomenon of a phase transition in the dynamics of quantum entanglement and information, drawing on machine learning to introduce a quantum convolutional neural network that can recognize quantum states associated with a one-dimensional symmetry-protected topological phase, and exploring a range of quantum applications of the nitrogen-vacancy color center of diamond.

After completing his undergraduate study in physics at Caltech in 2012, Choi received his PhD degree in physics from Harvard University in 2018. He then worked as a Miller Postdoctoral Fellow at the University of California at Berkeley before joining the Department of Physics and the Center for Theoretical Physics as an assistant professor in July 2021.

Olivia Corradin investigates how genetic variants contribute to disease. She focuses on non-coding DNA variants — changes in DNA sequence that can alter the regulation of gene expression — to gain insight into pathogenesis. With her novel outside-variant approach, Corradin’s lab singled out a type of brain cell involved in multiple sclerosis, increasing total heritability identified by three- to five-fold. A recipient of the Avenir Award through the NIH Director’s Pioneer Award Program, Corradin also scrutinizes how genetic and epigenetic variation influence susceptibility to substance abuse disorders. These critical insights into multiple sclerosis, opioid use disorder, and other diseases have the potential to improve risk assessment, diagnosis, treatment, and preventative care for patients.

Corradin completed a bachelor’s degree in biochemistry from Marquette University in 2010 and a PhD in genetics from Case Western Reserve University in 2016. A Whitehead Institute Fellow since 2016, she also became an institute member in July 2021. The Department of Biology welcomes Corradin as an assistant professor.

Arlene Fiore seeks to understand processes that control two-way interactions between air pollutants and the climate system, as well as the sensitivity of atmospheric chemistry to different chemical, physical, and biological sources and sinks at scales ranging from urban to global and daily to decadal. Combining chemistry-climate models and observations from ground, airborne, and satellite platforms, Fiore has identified global dimensions to ground-level ozone smog and particulate haze that arise from linkages with the climate system, global atmospheric composition, and the terrestrial biosphere. She also investigates regional meteorology and climate feedbacks due to aerosols versus greenhouse gases, future air pollution responses to climate change, and drivers of atmospheric oxidizing capacity. A new research direction involves using chemistry-climate model ensemble simulations to identify imprints of climate variability on observational records of trace gases in the troposphere.

After earning a bachelor’s degree and PhD from Harvard University, Fiore held a research scientist position at the Geophysical Fluid Dynamics Laboratory and was appointed as an associate professor with tenure at Columbia University in 2011. Over the last decade, she has worked with air and health management partners to develop applications of satellite and other Earth science datasets to address their emerging needs. Fiore’s honors include the American Geophysical Union (AGU) James R. Holton Junior Scientist Award, Presidential Early Career Award for Scientists and Engineers (the highest honor bestowed by the United States government on outstanding scientists and engineers in the early stages of their independent research careers), and AGU’s James B. Macelwane Medal. The Department of Earth, Atmospheric and Planetary Sciences welcomes Fiore as the first Peter H. Stone and Paola Malanotte Stone Professor.

With a background in magnetism, Danna Freedman leverages inorganic chemistry to solve problems in physics. Within this paradigm, she is creating the next generation of materials for quantum information by designing spin-based quantum bits, or qubits, based in molecules. These molecular qubits can be precisely controlled, opening the door for advances in quantum computation, sensing, and more. She also harnesses high pressure to synthesize new emergent materials, exploring the possibilities of intermetallic compounds and solid-state bonding. Among other innovations, Freedman has realized millisecond coherence times in molecular qubits, created a molecular analogue of an NV center featuring optical read-out of spin, and discovered the first iron-bismuth binary compound.

Freedman received her bachelor’s degree from Harvard University and her PhD from the University of California at Berkeley, then conducted postdoctoral research at MIT before joining the faculty at Northwestern University as an assistant professor in 2012, earning an NSF CAREER Award, the Presidential Early Career Award for Scientists and Engineers, the ACS Award in Pure Chemistry, and more. She was promoted to associate professor in 2018 and full professor with tenure in 2020. Freedman returns to MIT as the Frederick George Keyes Professor of Chemistry.

Kristin Knouse PhD ’17 aims to understand how tissues sense and respond to damage, with the goal of developing new approaches for regenerative medicine. She focuses on the mammalian liver — which has the unique ability to completely regenerate itself — to ask how organisms react to organ injury, how certain cells retain the ability to grow and divide while others do not, and what genes regulate this process. Knouse creates innovative tools, such as a genome-wide CRISPR screening within a living mouse, to examine liver regeneration from the level of a single-cell to the whole organism.

Knouse received a bachelor’s degree in biology from Duke University in 2010 and then enrolled in the Harvard and MIT MD-PhD Program, where she earned a PhD through the MIT Department of Biology in 2016 and an MD through the Harvard-MIT Program in Health Sciences and Technology in 2018. In 2018, she established her independent laboratory at the Whitehead Institute for Biomedical Research and was honored with the NIH Director’s Early Independence Award. Knouse joins the Department of Biology and the Koch Institute for Integrative Cancer Research as an assistant professor.

Lina Necib PhD ’17 is an astroparticle physicist exploring the origin of dark matter through a combination of simulations and observational data that correlate the dynamics of dark matter with that of the stars in the Milky Way. She has investigated the local dynamic structures in the solar neighborhood using the Gaia satellite, contributed to building a catalog of local accreted stars using machine learning techniques, and discovered a new stream called Nyx, after the Greek goddess of the night. Necib is interested in employing Gaia in conjunction with other spectroscopic surveys to understand the dark matter profile in the local solar neighborhood, the center of the galaxy, and in dwarf galaxies.

After obtaining a bachelor’s degree in mathematics and physics from Boston University in 2012 and a PhD in theoretical physics from MIT in 2017, Necib was a Sherman Fairchild Fellow at Caltech, a Presidential Fellow at the University of California at Irvine, and a fellow in theoretical astrophysics at Carnegie Observatories. She returns to MIT as an assistant professor in the Department of Physics and a member of the MIT Kavli Institute for Astrophysics and Space Research.

Andrew Vanderburg studies exoplanets, or planets that orbit stars other than the sun. Conducting astronomical observations from Earth as well as space, he develops cutting-edge methods to learn about planets outside of our solar system. Recently, he has leveraged machine learning to optimize searches and identify planets that were missed by previous techniques. With collaborators, he discovered the eighth planet in the Kepler-90 solar system, a Jupiter-like planet with unexpectedly close orbiting planets, and rocky bodies disintegrating near a white dwarf, providing confirmation of a theory that such stars may accumulate debris from their planetary systems.

Vanderburg received a bachelor’s degree in physics and astrophysics from the University of California at Berkeley in 2013 and a PhD in Astronomy from Harvard University in 2017. Afterward, Vanderburg moved to the University of Texas at Austin as a NASA Sagan Postdoctoral Fellow, then to the University of Wisconsin at Madison as a faculty member. He joins MIT as an assistant professor in the Department of Physics and a member of the Kavli Institute for Astrophysics and Space Research.

A computational neuroscientist, Guangyu Robert Yang is interested in connecting artificial neural networks to the actual functions of cognition. His research incorporates computational and biological systems and uses computational modeling to understand the optimization of neural systems which function to accomplish multiple tasks. As a postdoc, Yang applied principles of machine learning to study the evolution and organization of the olfactory system. The neural networks his models generated show important similarities to the biological circuitry, suggesting that the structure of the olfactory system evolved in order to optimally enable the specific tasks needed for odor recognition.

Yang received a bachelor’s degree in physics from Peking University before obtaining a PhD in computational neuroscience at New York University, followed by an internship in software engineering at Google Brain. Before coming to MIT, he conducted postdoctoral research at the Center for Theoretical Neuroscience of Columbia University, where he was a junior fellow at the Simons Society of Fellows. Yang is an assistant professor in the Department of Brain and Cognitive Sciences with a shared appointment in the Department of Electrical Engineering and Computer Science in the School of Engineering and the MIT Schwarzman College of Computing as well as an associate investigator with the McGovern Institute.

Jacqueline Lees and Rebecca Saxe named associate deans of science

Jaqueline Lees and Rebecca Saxe have been named associate deans serving in the MIT School of Science. Lees is the Virginia and D.K. Ludwig Professor for Cancer Research and is currently the associate director of the Koch Institute for Integrative Cancer Research, as well as an associate department head and professor in the Department of Biology at MIT. Saxe is the John W. Jarve (1978) Professor in Brain and Cognitive Sciences and the associate head of the Department of Brain and Cognitive Sciences (BCS); she is also an associate investigator in the McGovern Institute for Brain Research.

Lees and Saxe will both contribute to the school’s diversity, equity, inclusion, and justice (DEIJ) activities, as well as develop and implement mentoring and other career-development programs to support the community. From their home departments, Saxe and Lees bring years of DEIJ and mentorship experience to bear on the expansion of school-level initiatives.

Lees currently serves on the dean’s science council in her capacity as associate director of the Koch Institute. In this new role as associate dean for the School of Science, she will bring her broad administrative and programmatic experiences to bear on the next phase for DEIJ and mentoring activities.

Lees joined MIT in 1994 as a faculty member in MIT’s Koch Institute (then the Center for Cancer Research) and Department of Biology. Her research focuses on regulators that control cellular proliferation, terminal differentiation, and stemness — functions that are frequently deregulated in tumor cells. She dissects the role of these proteins in normal cell biology and development, and establish how their deregulation contributes to tumor development and metastasis.

Since 2000, she has served on the Department of Biology’s graduate program committee, and played a major role in expanding the diversity of the graduate student population. Lees also serves on DEIJ committees in her home department, as well as at the Koch Institute.

With co-chair with Boleslaw Wyslouch, director of the Laboratory for Nuclear Science, Lees led the ReseArch Scientist CAreer LadderS (RASCALS) committee tasked to evaluate career trajectories for research staff in the School of Science and make recommendations to recruit and retain talented staff, rewarding them for their contributions to the school’s research enterprise.

“Jackie is a powerhouse in translational research, demonstrating how fundamental work at the lab bench is critical for making progress at the patient bedside,” says Nergis Mavalvala, dean of the School of Science. “With Jackie’s dedicated and thoughtful partnership, we can continue to lead in basic research and develop the recruitment, retention, and mentoring and necessary to support our community.”

Saxe will join Lees in supporting and developing programming across the school that could also provide direction more broadly at the Institute.

“Rebecca is an outstanding researcher in social cognition and a dedicated educator — someone who wants our students not only to learn, but to thrive,” says Mavalvala. “I am grateful that Rebecca will join the dean’s leadership team and bring her mentorship and leadership skills to enhance the school.”

For example, in collaboration with former department head James DiCarlo, the BCS department has focused on faculty mentorship of graduate students; and, in collaboration with Professor Mark Bear, the department developed postdoc salary and benefit standards. Both initiatives have become models at MIT.

With colleague Laura Schulz, Saxe also served as co-chair of the Committee on Medical Leave and Hospitalizations (CMLH), which outlined ways to enhance MIT’s current leave and hospitalization procedures and policies for undergraduate and graduate students. Saxe was also awarded MIT’s Committed to Caring award for excellence in graduate student mentorship, as well as the School of Science’s award for excellence in undergraduate teaching.

In her research, Saxe studies human social cognition, using a combination of behavioral testing and brain imaging technologies. She is best known for her work on brain regions specialized for abstract concepts, such as “theory of mind” tasks that involve understanding the mental states of other people. Her TED Talk, “How we read each other’s minds” has been viewed more than 3 million times. She also studies the development of the human brain during early infancy.

She obtained her PhD from MIT and was a Harvard University junior fellow before joining the MIT faculty in 2006. In 2014, the National Academy of Sciences named her one of two recipients of the Troland Award for investigators age 40 or younger “to recognize unusual achievement and further empirical research in psychology regarding the relationships of consciousness and the physical world.” In 2020, Saxe was named a John Simon Guggenheim Foundation Fellow.

Saxe and Lees will also work closely with Kuheli Dutt, newly hired assistant dean for diversity, equity, and inclusion, and other members of the dean’s science council on school-level initiatives and strategy.

“I’m so grateful that Rebecca and Jackie have agreed to take on these new roles,” Mavalvala says. “And I’m super excited to work with these outstanding thought partners as we tackle the many puzzles that I come across as dean.”

International Dyslexia Association recognizes John Gabrieli with highest honor

Cognitive neuroscientist John Gabrieli has been named the 2021 winner of the Samuel Torrey Orton Award, the International Dyslexia Association’s highest honor. The award recognizes achievements of leading researchers and practitioners in the dyslexia field, as well as those of individuals with dyslexia who exhibit leadership and serve as role models in their communities.

“I am grateful to the International Dyslexia Association for this recognition,” said Gabrieli, who is the Grover Hermann Professor of Health Sciences and Technology, a professor of brain and cognitive sciences, and a member of MIT’s McGovern Institute for Brain Research. “The association has been such an advocate for individuals and their families who struggle with dyslexia, and has also been such a champion for the relevant science. I am humbled to join the company of previous recipients of this award who have done so much to help us understand dyslexia and how individuals with dyslexia can be supported to flourish in their growth and development.”

Gabrieli, who is also the director of MIT’s Athinoula A. Martinos Imaging Center, uses neuroimaging and behavioral tests to understand how the human brain powers learning, thinking, and feeling.  For the last two decades, Gabrieli has sought to unravel the neuroscience behind learning and reading disabilities and, ultimately, convert that understanding into new and better education interventions—a sort of translational medicine for the classroom.

“We want to get every kid to be an adequate reader by the end of the third grade,” Gabrieli says. “That’s the ultimate goal: to help all children become learners.”

In March of 2018, Gabrieli and the MIT Integrated Learning Initiative—MITili, which he also directs—announced a $30 million-dollar grant from the Chan Zuckerberg Initiative for a collaboration between MIT, the Harvard Graduate School of Education, and Florida State University. This partnership, called “Reach Every Reader” aims to make significant progress on the crisis in early literacy – including tools to identify children at risk for dyslexia and other learning disabilities before they even learn to read.

“John is especially deserving of this award,” says Hugh Catts, Gabrieli’s colleague at Reach Every Reader. Catts is a professor and director of the School of Communications Science and Disorders at Florida State University. “His work has been seminal to our understanding of the neural basis of learning and learning difficulties such as dyslexia. He has been a strong advocate for individuals with dyslexia and a mentor to leading experts in the field,” says Catts, who is also received the Orton Award in 2008.

“It’s a richly deserved honor,”says Sanjay Sarma, the Fred Fort Flowers (1941) and Daniel Fort Flowers (1941) Professor of Mechanical Engineering at MIT. “John’s research is a cornerstone of MIT’s efforts to make education more equitable and accessible for all. His contributions to learning science inform so much of what we do, and his advocacy continues to raise public awareness of dyslexia and helps us better reach the dyslexic community through literacy initiatives such as Reach Every Reader. We’re so pleased that his work has been recognized with the Samuel Torrey Orton Award,” says Sarma, who is also Vice President for Open Learning at MIT.

Gabrieli will deliver the Samuel Torrey Orton and Joan Lyday Orton Memorial Lecture this fall in North Carolina as part of the 2021 International Dyslexia Association’s Annual Reading, Literacy and Learning Conference.

 

 

MIT Technology Review names McGovern Fellows top innovators under 35

McGovern Institute Fellows Omar Abudayyeh and Jonathan Gootenberg have both been named to MIT Technology Review’s annual list of exceptional innovators under the age of 35. The annual list recognizes “exceptionally talented technologists whose work has great potential to transform the world.”

Abudayyeh was named to the 2020 list for developing a CRISPR-based test for COVID-19; a diagnostic technology that now has potential to rapidly and economically detect a wide variety of diseases.

This year, Gootenberg is being recognized for his work with CRISPR gene editing technologies to develop a cellular engineering “toolkit” that will help scientists better understand — and treat — diseases that affect millions worldwide.

“I’m honored that our lab’s work on molecular tools for cellular engineering is being recognized for its potential impact on diagnostics and therapeutics for patients.” — Jonathan Gootenberg

During their time in the Zhang lab, Abudayyeh and Gootenberg engineered new genome editing tools based on enzymes that they and others discovered from scanning bacterial CRISPR systems. In 2018, Gootenberg and Abudayyeh became the first members of the McGovern Institute Fellows program, which supports the transition to independent research for exceptional recent PhD graduates.

“It’s exciting that alternative uses of CRISPR beyond gene editing are being recognized, including for sensing and diagnosing diverse disease states and that certain CRISPR-based COVID-19 diagnostic assays already authorized for patient use,” says Abudayyeh.

CRISPR-based COVID-19 test using paper strips. Photo: Broad Institute

“Omar and Jonathan’s combination of basic discovery and synthetic biology continues to deliver ever more powerful tools for probing and controlling cell activity,” says McGovern Institute Director Robert Desimone. “Such tools are key to the immense challenge of understanding brain function, and treating dysfunction, the goal of the McGovern Institute.”

Now Abudayyeh and Gootenberg is expanding the boundaries of cellular engineering tools, to encompass not only genome editing but also transcriptome control and cell-state sensing — powerful technologies that can change or correct how cells behave without permanently changing their genome. Just as CRISPR has helped decode the role of genes in disease and provided a method for changing gene sequences, the pair’s cellular engineering tools reveal how cells in the body transform in response to disease and provide new means of curing disease. It is the potential of these tools to usher in a new era of cellular discoveries and treatments that caught the attention of the editors at MIT Technology Review.

“We get more than 500 nominations for the list every year, and getting that list down to 35—a task not only for the editors at MIT Technology Review but also for our 30+ judges—is one of the hardest things we do each year,” says Tim Maher, Managing Editor of MIT Technology Review. “We love the way the final list always shows what a wide variety of people there are, all around the world, working on creative solutions to some of humanity’s hardest problems.”

Gootenberg and Abudayyeh continue to work together to build a comprehensive toolkit to both understand and engineer human cells. Gootenberg and his fellow honorees will be featured at the upcoming EmTech MIT conference, MIT Technology Review’s annual flagship event that offers a perspective on the most significant developments of the year, with a focus on understanding their potential business and societal impact. EmTech MIT will be held online September 28-30, 2021.

Michale Fee appointed head of MIT’s Brain and Cognitive Sciences Department

McGovern Investigator Michale Fee at work in the lab with postdoc Galen Lynch. Photo: Justin Knight

Michale Fee, the Glen V. and Phyllis F. Dorflinger Professor of Brain and Cognitive Sciences, has been named as the new head of the Department of Brain and Cognitive Sciences (BCS) effective May 1, 2021.

Fee, who is an investigator in the McGovern Institute for Brain Research, succeeds James DiCarlo, the Peter de Florez Professor of Neuroscience, who announced in December that he was stepping down to become director of the MIT Quest for Intelligence.

“I want to thank Jim for his impressive work over the last nine years as head,” says Fee. “I know firsthand from my time as associate department head that BCS is in good shape and on a steady course. Jim has set a standard of transparent and collaborative leadership, which is a solid foundation for making our community stronger on all fronts.” Fee notes that his first mission is to continue the initiatives begun under DiCarlo’s leadership—in academics (especially Course 6-9), mentoring, and diversity, equity, inclusion, and justice—while maintaining the highest standards of excellence in research and education.

“Jim has overseen significant growth in the faculty and its impact, as well as important academic initiatives to strengthen the department’s graduate and undergraduate programs,” says Nergis Mavalvala, dean of the School of Science. “His emphasis on building ties among BCS, the McGovern Institute for Brain Research, and the Picower Institute for Learning and Memory has brought innumerable new collaborations among researchers and helped solidify Building 46 and MIT as world leaders in brain science.”

Fee earned his BE in engineering physics in 1985 at the University of Michigan, and his PhD in applied physics at Stanford University in 1992, under the mentorship of Nobel laureate Stephen Chu. His doctoral work was followed by research in the Biological Computation Department at Bell Laboratories. He joined MIT and BCS as an associate professor in 2003 and was promoted to full professor in 2008.

He has served since 2012 as associate department head for education in BCS, overseeing significant evolution in the department’s academic programs, including a complete reworking of the Course 9 curriculum and the establishment in 2019 of Course 6-9, Computation and Cognition, in partnership with EECS.

In his research, Fee explores the neural mechanisms by which the brain learns complex sequential behaviors, using the learning of song by juvenile zebra finches as a model. He has brought new experimental and computational methods to bear on these questions, identifying a number of circuits used to learn, modify, time, and coordinate the development and utterance of song syllables.

“His work is emblematic of the department in that it crosses technical and disciplinary boundaries in search of the most significant discoveries,” says DiCarlo. “His research background gives Michale a deep appreciation of the importance of every sub-discipline in our community and a broad understanding of the importance of their connections with each other.”

Fee has received numerous honors and awards for his research and teaching, including the MIT Fundamental Science Investigator Award in 2017, the MIT School of Science Teaching Prize for Undergraduate Education in 2016, the BCS Award for Excellence in Undergraduate Teaching in 2015, and the Lawrence Katz Prize for Innovative Research in Neuroscience from Duke University in 2012.

Fee will be the sixth head of the department, after founding chair Hans-Lukas Teuber (1964–77), Richard Held (1977–86), Emilio Bizzi (1986–97), Mriganka Sur (1997–2012), and James DiCarlo (2012–21).

Nine MIT students awarded 2021 Paul and Daisy Soros Fellowships for New Americans

An MIT senior and eight MIT graduate students are among the 30 recipients of this year’s P.D. Soros Fellowships for New Americans. In addition to senior Fiona Chen, MIT’s newest Soros winners include graduate students Aziza Almanakly, Alaleh Azhir, Brian Y. Chang PhD ’18, James Diao, Charlie ChangWon Lee, Archana Podury, Ashwin Sah ’20, and Enrique Toloza. Six of the recipients are enrolled at the Harvard-MIT Program in Health Sciences and Technology.

P.D. Soros Fellows receive up to $90,000 to fund their graduate studies and join a lifelong community of new Americans from different backgrounds and fields. The 2021 class was selected from a pool of 2,445 applicants, marking the most competitive year in the fellowship’s history.

The Paul & Daisy Soros Fellowships for New Americans program honors the contributions of immigrants and children of immigrants to the United States. As Fiona Chen says, “Being a new American has required consistent confrontation with the struggles that immigrants and racial minorities face in the U.S. today. It has meant frequent difficulties with finding security and comfort in new contexts. But it has also meant continual growth in learning to love the parts of myself — the way I look; the things that my family and I value — that have marked me as different, or as an outsider.”

Students interested in applying to the P.D. Soros fellowship should contact Kim Benard, assistant dean of distinguished fellowships in Career Advising and Professional Development.

Aziza Almanakly

Aziza Almanakly, a PhD student in electrical engineering and computer science, researches microwave quantum optics with superconducting qubits for quantum communication under Professor William Oliver in the Department of Physics. Almanakly’s career goal is to engineer multi-qubit systems that push boundaries in quantum technology.

Born and raised in northern New Jersey, Almanakly is the daughter of Syrian immigrants who came to the United States in the early 1990s in pursuit of academic opportunities. As the civil war in Syria grew dire, more of her relatives sought asylum in the U.S. Almanakly grew up around extended family who built a new version of their Syrian home in New Jersey.

Following in the footsteps of her mathematically minded father, Almanakly studied electrical engineering at The Cooper Union for the Advancement of Science and Art. She also pursued research opportunities in experimental quantum computing at Princeton University, the City University of New York, New York University, and Caltech.

Almanakly recognizes the importance of strong mentorship in diversifying engineering. She uses her unique experience as a New American and female engineer to encourage students from underrepresented backgrounds to enter STEM fields.

Alaleh Azhir

Alaleh Azhir grew up in Iran, where she pursued her passion for mathematics. She immigrated with her mother to the United States at age 14. Determined to overcome strict gender roles she had witnessed for women, Azhir is dedicated to improving health care for them.

Azhir graduated from Johns Hopkins University in 2019 with a perfect GPA as a triple major in biomedical engineering, computer science, and applied mathematics and statistics. A Rhodes and Barry Goldwater Scholar, she has developed many novel tools for visualization and analysis of genomics data at Johns Hopkins University, Harvard University, MIT, the National Institutes of Health, and laboratories in Switzerland.

After completing a master’s in statistical science at Oxford University, Azhir began her MD studies in the Harvard-MIT Program in Health Sciences and Technology. Her thesis focuses on the role of X and Y sex chromosomes on disease manifestations. Through medical training, she aims to build further computational tools specifically for preventive care for women. She has also founded and directs the nonprofit organization, Frappa, aimed at mentoring women living in Iran and helping them to immigrate abroad through the graduate school application process.

Brian Y. Chang PhD ’18

Born in Johnson City, New York, Brian Y. Chang PhD ’18 is the son of immigrants from the Shanghai municipality and Shandong Province in China. He pursued undergraduate and master’s degrees in mechanical engineering at Carnegie Mellon University, graduating in a combined four years with honors.

In 2018, Chang completed a PhD in medical engineering at MIT. Under the mentorship of Professor Elazer Edelman, Chang developed methods that make advanced cardiac technologies more accessible. The resulting approaches are used in hospitals around the world. Chang has published extensively and holds five patents.

With the goal of harnessing the power of engineering to improve patient care, Chang co-founded X-COR Therapeutics, a seed-funded medical device startup developing a more accessible treatment for lung failure with the potential to support patients with severe Covid-19 and chronic obstructive pulmonary disease.

After spending time in the hospital connecting with patients and teaching cardiovascular pathophysiology to medical students, Chang decided to attend medical school. He is currently a medical student in the Harvard-MIT Program in Health Sciences and Technology. Chang hopes to advance health care through medical device innovation and education as a future physician-scientist, entrepreneur, and educator.

Fiona Chen

MIT senior Fiona Chen was born in Cedar Park, Texas, the daughter of immigrants from China. Witnessing how her own and many other immigrant families faced significant difficulties finding work and financial stability sparked her interest in learning about poverty and economic inequality.

At MIT, Chen has pursued degrees in economics and mathematics. Her economics research projects have examined important policy issues — social isolation among students, global development and poverty, universal health-care systems, and the role of technology in shaping the labor market.

An active member of the MIT community, Chen has served as the officer on governance and officer on policy of the Undergraduate Association, MIT’s student government; the opinion editor of The Tech student newspaper; the undergraduate representative of several Institute-wide committees, including MIT’s Corporation Joint Advisory Committee; and one of the founding members of MIT Students Against War. In each of these roles, she has worked to advocate for policies to support underrepresented groups at MIT.

As a Soros fellow, Chen will pursue a PhD in economics to deepen her understanding of economic policy. Her ultimate goal is to become a professor who researches poverty and economic inequality, and applies her findings to craft policy solutions.

James Diao

James Diao graduated from Yale University with degrees in statistics and biochemistry and is currently a medical student at the Harvard-MIT Program in Health Sciences and Technology. He aspires to give voice to patient perspectives in the development and evaluation of health-care technology.

Diao grew up in Houston’s Chinatown, and spent summers with his extended family in Jiangxian. Diao’s family later moved to Fort Bend, Texas, where he found a pediatric oncologist mentor who introduced him to the wonders of modern molecular biology.

Diao’s interests include the responsible development of technology. At Apple, he led projects to validate wearable health features in diverse populations; at PathAI, he built deep learning models to broaden access to pathologist services; at Yale, where he worked on standardizing analyses of exRNA biomarkers; and at Harvard, he studied the impacts of clinical guidelines on marginalized groups.

Diao’s lead author research in the New England Journal of Medicine and JAMA systematically compared race-based and race-free equations for kidney function, and demonstrated that up to 1 million Black Americans may receive unequal kidney care due to their race. He has also published articles on machine learning and precision medicine.

Charlie ChangWon Lee

Born in Seoul, South Korea, Charlie ChangWon Lee was 10 when his family immigrated to the United States and settled in Palisades Park, New Jersey. The stress of his parents’ lack of health coverage ignited Lee’s determination to study the reasons for the high cost of health care in the U.S. and learn how to care for uninsured families like his own.

Lee graduated summa cum laude in integrative biology from Harvard College, winning the Hoopes Prize for his thesis on the therapeutic potential of human gut microbes. Lee’s research on novel therapies led him to question how newly approved, and expensive, medications could reach more patients.

At the Program on Regulation, Therapeutics, and Law (PORTAL) at Brigham and Women’s Hospital, Lee studied policy issues involving pharmaceutical drug pricing, drug development, and medication use and safety. His articles have appeared in JAMA, Health Affairs, and Mayo Clinic Proceedings.

As a first-year medical student at the Harvard-MIT Health Sciences and Technology program, Lee is investigating policies to incentivize vaccine and biosimilar drug development. He hopes to find avenues to bridge science and policy and translate medical innovations into accessible, affordable therapies.

Archana Podury

The daughter of Indian immigrants, Archana Podury was born in Mountain View, California. As an undergraduate at Cornell University, she studied the neural circuits underlying motor learning. Her growing interest in whole-brain dynamics led her to the Princeton Neuroscience Institute and Neuralink, where she discovered how brain-machine interfaces could be used to understand diffuse networks in the brain.

While studying neural circuits, Podury worked at a syringe exchange in Ithaca, New York, where she witnessed firsthand the mechanics of court-based drug rehabilitation. Now, as an MD student in the Harvard-MIT Health Sciences and Technology program, Podury is interested in combining computational and social approaches to neuropsychiatric disease.

In the Boyden Lab at the MIT McGovern Institute for Brain Research, Podury is developing human brain organoid models to better characterize circuit dysfunction in neurodevelopmental disorders. Concurrently, her work in the Dhand Lab at Brigham and Women’s Hospital applies network science tools to understand how patients’ social environments influence their health outcomes following acute neurological injury.

Podury hopes that focusing on both neural and social networks can lead toward a more comprehensive, and compassionate, approach to health and disease.

Ashwin Sah ’20

Ashwin Sah ’20 was born and raised in Portland, Oregon, the son of Indian immigrants. He developed a passion for mathematics research as an undergraduate at MIT, where he conducted research under Professor Yufei Zhao, as well as at the Duluth and Emory REU (Research Experience for Undergraduates) programs.

Sah has given talks on his work at multiple professional venues. His undergraduate research in varied areas of combinatorics and discrete mathematics culminated in the Barry Goldwater Scholarship and the Frank and Brennie Morgan Prize for Outstanding Research in Mathematics by an Undergraduate Student. Additionally, his work on diagonal Ramsey numbers was recently featured in Quanta Magazine.

Beyond research, Sah has pursued opportunities to give back to the math community, helping to organize or grade competitions such as the Harvard-MIT Mathematics Tournament and the USA Mathematical Olympiad. He has also been a grader at the Mathematical Olympiad Program, a camp for talented high-school students in the United States, and an instructor for the Monsoon Math Camp, a virtual program aimed at teaching higher mathematics to high school students in India.

Sah is currently a PhD student in mathematics at MIT, where he continues to work with Zhao.

Enrique Toloza

Enrique Toloza was born in Los Angeles, California, the child of two immigrants: one from Colombia who came to the United States for a PhD and the other from the Philippines who grew up in California and went on to medical school. Their literal marriage of science and medicine inspired Toloza to become a physician-scientist.

Toloza majored in physics and Spanish literature at the University of North Carolina at Chapel Hill. He eventually settled on an interest in theoretical neuroscience after a summer research internship at MIT and completing an honors thesis on noninvasive brain stimulation.

After college, Toloza joined Professor Mark Harnett’s laboratory at MIT for a year. He went on to enroll in the Harvard-MIT MD/PhD program, studying within the Health Sciences and Technology MD curriculum at Harvard and the PhD program at MIT. For his PhD, Toloza rejoined Harnett to conduct research on the biophysics of dendritic integration and the contribution of dendrites to cortical computations in the brain.

Toloza is passionate about expanding health care access to immigrant populations. In college, he led the interpreting team at the University of North Carolina at Chapel Hill’s student-run health clinic; at Harvard Medical School, he has worked with Spanish-speaking patients as a student clinician.

Four MIT scientists honored with 2021 National Academy of Sciences awards

Four MIT scientists are among the 20 recipients of the 2021 Academy Honors for major contributions to science, the National Academy of Sciences (NAS) announced at its annual meeting. The individuals are recognized for their “extraordinary scientific achievements in a wide range of fields spanning the physical, biological, social, and medical sciences.”

The awards recognize: Pablo Jarillo-Herrero, for contributions to the fields of nanoscience and nanotechnology through his discovery of correlated insulator behavior and unconventional superconductivity in magic-angle graphene superlattices; Aviv Regev, for using interdisciplinary information or techniques to solve a contemporary challenge; Susan Solomon, for contributions to understanding and communicating the causes of ozone depletion and climate change; and Feng Zhang, for pioneering achievements developing CRISPR tools with the potential to diagnose and treat disease.

Pablo Jarillo-Herrero: Award for Scientific Discovery

Pablo Jarillo-Herrero, a Cecil and Ida Green Professor of Physics, is the recipient of the NAS Award for Scientific Discovery for his pioneering developments in nanoscience and nanotechnology, which is presented to scientists in the fields of astronomy, materials science, or physics. His findings expand nanoscience by demonstrating for the first time that orientation can be used to dramatically control nanomaterial properties and to design new nanomaterials. This work lays the groundwork for developing a whole new family of 2D materials and has had a transformative impact on the field and on condensed-matter physics.

The biannual award recognizes “an accomplishment or discovery in basic research, achieved within the previous five years, that is expected to have a significant impact on one or more of the following fields: astronomy, biochemistry, biophysics, chemistry, materials science, or physics.”

In 2018, his research group discovered that by rotating two layers of graphene relative to each other by a magic angle, the bilayer material can be turned from a metal into an electrical insulator or even a superconductor. This discovery has fostered new theoretical and experimental research, inspiring the interest of technologists in nanoelectronics. The result is a new field in condensed-matter physics that has the potential to result in materials that conduct electricity without resistance at room temperature.

Aviv Regev: James Prize in Science and Technology Integration

Aviv Regev, who is a professor of biology, a core member of the Broad Institute of Harvard and MIT, a member of the Koch Institute, and a Howard Hughes Medical Institute investigator has been selected for the inaugural James Prize in Science and Technology Integration, along with Harvard Medical School Professor Allon Kelin, for “their concurrent development of now widely adopted massively parallel single-cell genomics to interrogate the gene expression profiles that define, at the level of individual cells, the distinct cell types in metazoan tissues, their developmental trajectories, and disease states, which integrated tools from molecular biology, engineering, statistics, and computer science.”

The prize recognizes individuals “who are able to adopt or adapt information or techniques from outside their fields” to “solve a major contemporary challenge not addressable from a single disciplinary perspective.”

Regev is credited with forging new ways to unite the disciplines of biology, computational science, and engineering as a pioneer in the field of single-cell biology, including developing some of its core experimental and analysis tools, and their application to discover cell types, states, programs, environmental responses, development, tissue locations, and regulatory circuits, and deploying these to assemble cellular atlases of the human body that illuminate mechanisms of disease with remarkable fidelity.

Susan Solomon: Award for Chemistry in Service to Society

Susan Solomon, the Lee and Geraldine Martin Professor of Environmental Studies in the Department of Earth, Atmospheric and Planetary Sciences who holds a secondary appointment in the Department of Chemistry, is the recipient of the Award for Chemistry in Service to Society for “influential and incisive application of atmospheric chemistry to understand our most critical environmental issues — ozone layer depletion and climate change — and for her effective communication of environmental science to leaders to facilitate policy changes.”

The award is given biannually for “contributions to chemistry, either in fundamental science or its application, that clearly satisfy a societal need.”

Solomon is globally recognized as a leader in atmospheric science, notably for her insights in explaining the cause of the Antarctic ozone “hole.” She and her colleagues have made important contributions to understanding chemistry-climate coupling, including pioneering research on the irreversibility of global warming linked to anthropogenic carbon dioxide emissions, and on the influence of the ozone hole on the climate of the southern hemisphere.

Her work has had an enormous effect on policy and society, including the transition away from ozone-depleting substances and to environmentally benign chemicals. The work set the stage for the Paris Agreement on climate, and she continues to educate policymakers, the public, and the next generation of scientists.

Feng Zhang: Richard Lounsbery Award

Feng Zhang, who is the James and Patricia Poitras Professor of Neuroscience at MIT, an investigator at the McGovern Institute for Brain Research and the Howard Hughes Medical Institute, a professor of brain and cognitive sciences and biological engineering at MIT, and a core member of the Broad Institute of MIT and Harvard, is the recipient of the Richard Lounsbery Award for pioneering CRISPR-mediated genome editing.

The award recognizes “extraordinary scientific achievement in biology and medicine” as well as stimulating research and encouraging reciprocal scientific exchanges between the United States and France.

Zhang continues to lead the field through the discovery of novel CRISPR systems and their development as molecular tools with the potential to diagnose and treat disease, such as disorders affecting the nervous system. His contributions in genome engineering, as well as his earlier work developing optogenetics, are enabling a deeper understanding of behavioral neural circuits and advances in gene therapy for treating disease.

In addition, Zhang has championed the open sharing of the technologies he has developed through extensive resource sharing. The tools from his lab are being used by thousands of scientists around the world to accelerate research in nearly every field of the life sciences. Even as biomedical researchers around the world adopt Zhang’s discoveries and his tools enter the clinic to treat genetic diseases, he continues to innovate and develop new technologies to advance science.

The National Academy of Sciences is a private, nonprofit society of distinguished scholars, established in 1863 by the U.S. Congress. The NAS is charged with providing independent, objective advice to the nation on matters related to science and technology as well as encouraging education and research, recognize outstanding contributions to knowledge, and increasing public understanding in matters of science, engineering, and medicine. Winners received their awards, which include a monetary prize, during a virtual ceremony at the 158th NAS Annual Meeting.

This story is a modified compilation from several National Academy of Sciences press releases.