The School of Science has announced that the recipients of the school’s 2019 Teaching Prizes for Graduate and Undergraduate Education are Mehrdad Jazayeri and Hazel Sive. Nominated by peers and students, the faculty members chosen to receive these prizes are selected to acknowledge their exemplary efforts in teaching graduate and undergraduate students.
Mehrdad Jazayeri, an associate professor in the Department of Brain and Cognitive Sciences and investigator at the McGovern Institute for Brain Research, is awarded the prize for graduate education for 9.014 (Quantitative Methods and Computational Models in Neuroscience). Earlier this year, he was recognized for excellence in graduate teaching by the Department of Brain and Cognitive Sciences and won a Graduate Student Council teaching award in 2016. In their nomination letters, peers and students alike remarked that he displays not only great knowledge, but extraordinary skill in teaching, most notably by ensuring everyone learns the material. Jazayeri does so by considering students’ diverse backgrounds and contextualizing subject material to relatable applications in various fields of science according to students’ interests. He also improves and adjusts the course content, pace, and intensity in response to student input via surveys administered throughout the semester.
Hazel Sive, a professor in the Department of Biology, member of the Whitehead Institute for Biomedical Research, and associate member of the Broad Institute of MIT and Harvard, is awarded the prize for undergraduate education. A MacVicar Faculty Fellow, she has been recognized with MIT’s highest undergraduate teaching award in the past, as well as the 2003 School of Science Teaching Prize for Graduate Education. Exemplified by her nominations, Sive’s laudable teaching career at MIT continues to receive praise from undergraduate students who take her classes. In recent post-course evaluations, students commended her exemplary and dedicated efforts to her field and to their education.
The School of Science welcomes nominations for the teaching prize in the spring semester of each academic year. Nominations can be submitted at the school’s website.
The McGovern Institute is now accepting nominations for the Scolnick Prize in Neuroscience, which recognizes an outstanding discovery or significant advance in any field of neuroscience, until December 15, 2019.
About the Scolnick Prize
The prize is named in honor of Edward M. Scolnick, who stepped down as president of Merck Research Laboratories in December 2002 after holding Merck’s top research post for 17 years. The prize, which is endowed through a gift from Merck to the McGovern Institute, consists of a $150,000 award, plus an inscribed gift. The recipient presents a public lecture at MIT, hosted by the McGovern Institute and followed by a dinner in Spring 2020.
Nomination Process
Candidates for the award must be nominated by individuals affiliated with universities, hospitals, medical schools, or research institutes, with a background in neuroscience. Self-nomination is not permitted. Each nomination should include a biosketch or CV of the nominee and a letter of nomination with a summary and analysis of the nominee’s major contributions to the field of neuroscience. Up to two representative reprints will be accepted. The winner, selected by a committee appointed by the director of the McGovern Institute, will be announced in January 2020.
More information about the Scolnick Prize, including details about the nomination process, selection committee, and past Scolnick Prize recipients, can be found on our website.
Edward S. Boyden, the Y. Eva Tan Professor in Neurotechnology at MIT, has been awarded the 2019 Croonian Medal and Lecture by the Royal Society. Twenty-four medals and awards are announced by the Royal Society each year, honoring exceptional researchers who are making outstanding contributions to science.
“The Royal Society gives an array of medals and awards to scientists who have done exceptional, ground-breaking work,” explained Sir Venki Ramakrishnan, President of the Royal Society. “This year, it is again a pleasure to see these awards bestowed on scientists who have made such distinguished and far-reaching contributions in their fields. I congratulate and thank them for their efforts.”
Boyden wins the medal and lecture in recognition of his research that is expanding our understanding of the brain. This includes his critical role in the development of optogenetics, a technique for controlling brain activity with light, and his invention of expansion microscopy. Croonian Medal laureates include notable luminaries of science and neurobiology.
“It is a great honor to be selected to receive this medal, especially
since it was also given to people such as Santiago Ramon y Cajal, the
founder of modern neuroscience,” says Boyden. “This award reflects the great work of many fantastic students, postdocs, and collaborators who I’ve had the privilege to work with over the years.”
The award includes an invitation to deliver the premier British lecture in the biological sciences, given annually at the Royal Society in London. At the lecture, the winner is awarded a medal and a gift of £10,000. This announcement comes shortly after Boyden was co-awarded the Warren Alpert Prize for his role in developing optogenetics.
History of the Croonian Medal and Lecture
The lectureship was conceived by William Croone FRS, one of the original Fellows of the Society based in London. Among the papers left on his death in 1684 were plans to endow two lectureships, one at the Royal Society and the other at the Royal College of Physicians. His widow later bequeathed the means to carry out the scheme. The lecture series began in 1738.
Ed Boyden holds the titles of Investigator, McGovern Institute; Y. Eva Tan Professor in Neurotechnology at MIT; Leader, Synthetic Neurobiology Group, MIT Media Lab; Professor, Biological Engineering, Brain and Cognitive Sciences, MIT Media Lab; Co-Director, MIT Center for Neurobiological Engineering; Member, MIT Center for Environmental Health Sciences, Computational and Systems Biology Initiative, and Koch Institute.
The 2019 Warren Alpert Foundation Prize has been awarded to four scientists, including Ed Boyden, for pioneering work that launched the field of optogenetics, a technique that uses light-sensitive channels and pumps to control the activity of neurons in the brain with a flick of a switch. He receives the prize alongside Karl Deisseroth, Peter Hegemann, and Gero Miesenböck, as outlined by The Warren Alpert Foundation in their announcement.
Harnessing light and genetics, the approach illuminates and modulates the activity of neurons, enables study of brain function and behavior, and helps reveal activity patterns that can overcome brain diseases.
Boyden’s work was key to envisioning and developing optogenetics, now a core method in neuroscience. The method allows brain circuits linked to complex behavioral processes, such as those involved in decision-making, feeding, and sleep, to be unraveled in genetic models. It is also helping to elucidate the mechanisms underlying neuropsychiatric disorders, and has the potential to inspire new strategies to overcome brain disorders.
“It is truly an honor to be included among the extremely distinguished list of winners of the Alpert Award,” says Boyden, the Y. Eva Tan Professor in Neurotechnology at the McGovern Institute, MIT. “To me personally, it is exciting to see the relatively new field of neurotechnology recognized. The brain implements our thoughts and feelings. It makes us who we are. This mysteries and challenge requires new technologies to make the brain understandable and repairable. It is a great honor that our technology of optogenetics is being thus recognized.”
While they were students, Boyden, and fellow awardee Karl Deisseroth, brainstormed about how microbial opsins could be used to mediate optical control of neural activity. In mid-2004, the pair collaborated to show that microbial opsins can be used to optically control neural activity. Upon launching his lab at MIT, Boyden’s team developed the first optogenetic silencing tool, the first effective optogenetic silencing in live mammals, noninvasive optogenetic silencing, and single-cell optogenetic control.
“The discoveries made by this year’s four honorees have fundamentally changed the landscape of neuroscience,” said George Q. Daley, dean of Harvard Medical School. “Their work has enabled scientists to see, understand and manipulate neurons, providing the foundation for understanding the ultimate enigma—the human brain.”
Beyond optogenetics, Boyden has pioneered transformative technologies that image, record, and manipulate complex systems, including expansion microscopy, robotic patch clamping, and even shrinking objects to the nanoscale. He was elected this year to the ranks of the National Academy of Sciences, and selected as an HHMI Investigator. Boyden has received numerous awards for this work, including the 2018 Gairdner International Prize and the 2016 Breakthrough Prize in Life Sciences.
The Warren Alpert Foundation, in association with Harvard Medical School, honors scientists whose work has improved the understanding, prevention, treatment or cure of human disease. Prize recipients are selected by the foundation’s scientific advisory board, which is composed of distinguished biomedical scientists and chaired by the dean of Harvard Medical School. The honorees will share a $500,000 prize and will be recognized at a daylong symposium on Oct. 3 at Harvard Medical School.
Ed Boyden holds the titles of Investigator, McGovern Institute; Y. Eva Tan Professor in Neurotechnology at MIT; Leader, Synthetic Neurobiology Group, Media Lab; Associate Professor, Biological Engineering, Brain and Cognitive Sciences, Media Lab; Co-Director, MIT Center for Neurobiological Engineering; Member, MIT Center for Environmental Health Sciences, Computational and Systems Biology Initiative, and Koch Institute.
McGovern Institute investigator Mark Harnett is one of six young researchers selected to receive a prestigious 2019 McKnight Scholar Award. The award supports his research “studying how dendrites, the antenna-like input structures of neurons, contribute to computation in neural networks.”
Harnett examines the biophysical properties of single neurons, ultimately aiming to understand how these relate to the complex computations that underlie behavior. His lab was the first to examine the biophysical properties of human dendrites. The Harnett lab found that human neurons have distinct properties, including increased dendritic compartmentalization that could allow more complex computations within single neurons. His lab recently discovered that such dendritic computations are not rare, or confined to specific behaviors, but are a widespread and general feature of neuronal activity.
“As a young investigator, it is hard to prioritize so many exciting directions and ideas,” explains Harnett. “I really want to thank the McKnight Foundation, both for the support, but also for the hard work the award committee puts into carefully thinking about and giving feedback on proposals. It means a lot to get this type of endorsement from a seriously committed and distinguished committee, and their support gives even stronger impetus to pursue this research direction.”
The McKnight Foundation has supported neuroscience research since 1977, and provides three prominent awards, with the Scholar award aimed at supporting young scientists, and drawing applications from the strongest young neuroscience faculty across the US. William L. McKnight (1887-1979) was an early leader of the 3M Company and had a personal interest in memory and brain diseases. The McKnight Foundation was established with this focus in mind, and the Scholar Award provides $75,000 per year for three years to support cutting edge neuroscience research.
The McGovern Institute may be best known for its scientific breakthroughs, but a captivating series of brain-themed postcards developed by McGovern researchers and staff now reveals the institute’s artistic side.
What began in 2017 with a series of brain anatomy postcards inspired by the U.S. Works Projects Administration’s iconic national parks posters, has grown into a collection of twelve different prints, each featuring a unique fusion of neuroscience and art.
More information about each series in the McGovern Institute postcard collection, including the color-your-own mindfulness postcards, can be found below.
Mindfulness Postcard Series, 2023
In winter 2023, the institute released its mindfulness postcard series, a collection of four different neuroscience-themed illustrations that can be colored in with pencils, markers, or paint. The postcard series was inspired by research conducted in John Gabrieli’s lab, which found that practicing mindfulness reduced children’s stress levels and negative emotions during the pandemic. These findings contribute to a growing body of evidence that practicing mindfulness — focusing awareness on the present, typically through meditation, but also through coloring — can change patterns of brain activity associated with emotions and mental health.
The McGovern Institute is at the cutting edge of applications based on CRISPR, a genome editing tool pioneered by McGovern Investigator Feng Zhang. Hidden within this DNA-themed postcard is a clam, virus, bacteriophage, snail, and the word CRISPR. Click the links to learn how these hidden elements relate to genetic engineering research at the McGovern Institute.
Neurons
McGovern researchers probe the nanoscale and cellular processes that are critical to brain function, including the complex computations conducted in neurons, to the synapses and neurotransmitters that facilitate messaging between cells. Find the mouse, worm, and microscope — three critical elements related to cellular and molecular neuroscience research at the McGovern Institute — in the postcard below.
Human Brain
Cognitive neuroscientists at the McGovern Institute examine the brain processes that come together to inform our thoughts and understanding of the world. Find the musical note, speech bubbles, and human face in this postcard and click on the links to learn more about how these hidden elements relate to brain research at the McGovern Institute.
Artificial Intelligence
McGovern researchers develop machine learning systems that mimic human processing of visual and auditory cues and construct algorithms to help us understand the complex computations made by the brain. Find the speech bubbles, DNA, and cochlea (spiral) in this postcard and click on the links to learn more about how these hidden elements relate to computational neuroscience research at the McGovern Institute.
Neuron Postcard Series, 2019
In 2019, the McGovern Institute released a second series of postcards based on the anatomy of a neuron. Each postcard includes text on the back side that describes McGovern research related to that specific part of the neuron. The descriptive text for each postcard is shown beloSynapse
Synapse
Signals flow through the nervous system from one neuron to the next across synapses.
Synapses are exquisitely organized molecular machines that control the transmission of information.
McGovern researchers are studying how disruptions in synapse function can lead to brain disorders like autism.
Image: Joseph Laney
Axon
The axon is the long, thin neural cable that carries electrical impulses called action potentials from the soma to synaptic terminals at downstream neurons.
Researchers at the McGovern Institute are developing and using tracers that label axons to reveal the elaborate circuit architecture of the brain.
Image: Joseph Laney
Soma
The soma, or cell body, is the control center of the neuron, where the nucleus is located.
It connects the dendrites to the axon, which sends information to other neurons.
At the McGovern Institute, neuroscientists are targeting the soma with proteins that can activate single neurons and map connections in the brain.
Image: Joseph Laney
Dendrites
Long branching neuronal processes called dendrites receive synaptic inputs from thousands of other neurons and carry those signals to the cell body.
McGovern neuroscientists have discovered that human dendrites have different electrical properties from those of other species, which may contribute to the enhanced computing power of the human brain.
Image: Joseph Laney
Brain Anatomy Postcard Series, 2017
The original brain anatomy-themed postcard series, developed in 2017, was inspired by the U.S. Works Projects Administration’s iconic national parks posters created in the 1930s and 1940s. Each postcard includes text on the back side that describes McGovern research related to that specific part of the neuron. The descriptive text for each postcard is shown below.
Sylvian Fissure
Hippocampus
Basal Ganglia
Order and Share
To order your own McGovern brain postcards, contact our colleagues at the MIT Museum, where proceeds will support current and future exhibitions at the growing museum.
Please share a photo of yourself in your own lab (or natural habitat) with one of our cards on social media. Tell us what you’re studying and don’t forget to tag us @mcgovernmit using the hashtag #McGovernPostcards.
Ed Boyden has been elected to join the National Academy of Sciences (NAS). The organization, established by an act of Congress during the height of the Civil War, was founded to provide independent and objective advice on scientific matters to the nation, and is actively engaged in furthering science in the United States. Each year NAS members recognize fellow scientists through election to the academy based on their distinguished and continuing achievements in original research.
“I’m very honored and grateful to have been elected to the NAS,” says Boyden. “This is a testament to the work of many graduate students, postdoctoral scholars, research scientists, and staff at MIT who have worked with me over the years, and many collaborators and friends at MIT and around the world who have helped our group on this mission to advance neuroscience through new tools and ways of thinking.”
Boyden’s research creates and applies technologies that aim to expand our understanding of the brain. He notably co-invented optogenetics as an independent side collaboration, conducted in parallel to his PhD studies, a game-changing technology that has revolutionized neurobiology. This technology uses targeted expression of light-sensitive channels and pumps to activate or suppress neuronal activity in vivo using light. Optogenetics quickly swept the field of neurobiology and has been leveraged to understand how specific neurons and brain regions contribute to behavior and to disease.
His research since has an overarching focus on understanding the brain. To this end, he and his lab have the ambitious goal of developing technologies that can map, record, and manipulate the brain. This has led, as selected examples, to the invention of expansion microscopy, a super-resolution imaging technology that can capture neuron’s microstructures and reveal their complex connections, even across large-scale neural circuits; voltage-sensitive fluorescent reporters that allow neural activity to be monitored in vivo; and temporal interference stimulation, a non-invasive brain stimulation technique that allows selective activation of subcortical brain regions.
“We are all incredibly happy to see Ed being elected to the academy,” says Robert Desimone, director of the McGovern Institute for Brain Research at MIT. “He has been consistently innovative, inventing new ways of manipulating and observing neurons that are revolutionizing the field of neuroscience.”
This year the NAS, an organization that includes over 500 Nobel Laureates, elected 100 new members and 25 foreign associates. Three MIT professors were elected this year, with Paula T. Hammond (David H. Koch (1962) Professor of Engineering and Department Head, Chemical Engineering) and Aviv Regev (HHMI Investigator and Professor in the Department of Biology) being elected alongside Boyden. Boyden becomes the seventh member of the McGovern Institute faculty to join the National Academy of Sciences.
The formal induction ceremony for new NAS members, during which they sign the ledger whose first signatory is Abraham Lincoln, will be held at the Academy’s annual meeting in Washington D.C. next spring.
Four MIT faculty members are among more than 200 leaders from academia, business, public affairs, the humanities, and the arts elected to the American Academy of Arts and Sciences, the academy announced today.
One of the nation’s most prestigious honorary societies, the academy is also a leading center for independent policy research. Members contribute to academy publications, as well as studies of science and technology policy, energy and global security, social policy and American institutions, the humanities and culture, and education.
Those elected from MIT this year are:
Dimitri A. Antoniadis, Ray and Maria Stata Professor of Electrical Engineering;
Anantha P. Chandrakasan, dean of the School of Engineering and the Vannevar Bush Professor of Electrical Engineering and Computer Science;
Guoping Feng, the James W. (1963) and Patricia T. Poitras Professor of Brain and Cognitive Sciences; and
David R. Karger, professor of electrical engineering.
“We are pleased to recognize the excellence of our new members, celebrate their compelling accomplishments, and invite them to join the academy and contribute to its work,” said David W. Oxtoby, president of the American Academy of Arts and Sciences. “With the election of these members, the academy upholds the ideals of research and scholarship, creativity and imagination, intellectual exchange and civil discourse, and the relentless pursuit of knowledge in all its forms.”
The new class will be inducted at a ceremony in October in Cambridge, Massachusetts.
Since its founding in 1780, the academy has elected leading “thinkers and doers” from each generation, including George Washington and Benjamin Franklin in the 18th century, Maria Mitchell and Daniel Webster in the 19th century, and Toni Morrison and Albert Einstein in the 20th century. The current membership includes more than 200 Nobel laureates and 100 Pulitzer Prize winners.
Michael Halassa was just appointed as one of the newest Max Planck Fellows. His appointment comes through the Max Planck Florida Institute for Neuroscience (MPFI), which aims to forge collaborations between exceptional neuroscientists from around the world to answer fundamental questions about brain development and function. The Max Planck Society selects cutting edge, active researchers from other institutions to fellow positions for a five-year period to promote interactions and synergies. While the program is a longstanding feature of the Max Planck Society, Halassa, and fellow appointee Yi Guo of the University of California, Santa Cruz, are the first selected fellows that are based at U.S. institutions.
Michael Halassa is an associate investigator at the McGovern Institute and an assistant professor in the Department of Brain and Cognitive Sciences at MIT. Halassa’s research focuses on the neural architectures that underlie complex cognitive processes. He is particularly interested in goal-directed attention, our ability to rapidly switch attentional focus based on high level objectives. For example, when you are in a roomful of colleagues, the mention of your name in a distant conversation can quickly trigger your ‘mind’s ear’ to eavesdrop into that conversation. This contrasts with hearing a name that sounds like yours on television, which does not usually grab your attention in the same way. In certain mental disorders such as schizophrenia, the ability to generate such high-level objectives, while also accounting for context, is perturbed. Recent evidence strongly suggests that impaired function of the prefrontal cortex and its interactions with a region of the brain called the thalamus may be altered in such disorders. It is this thalamocortical network that Halassa has been studying in mice, where his group has uncovered how the thalamus supports the ability of the prefrontal cortex to generate context-appropriate attentional signals.
The fellowship will support extending Halassa’s work into the tree shrew (Tupaia belangeri), which has been shown to have advanced cognitive abilities compared to mice while also offering many of the circuit-interrogation tools that make the mouse an attractive experimental model.
The Max Planck Florida Institute for Neuroscience (MPFI), a not-for-profit research organization, is part of the world-renowned Max Planck Society, Germany’s most successful research organization. The Max Planck Society was founded in 1911, and comprises 84 institutes and research facilities. While primarily located in Germany, there are 4 institutes and one research facility located aboard, including the Florida Institute that Halassa will collaborate with. The fellow positions were created with the goal of increasing interactions between the Max Planck Society and its institutes with faculty engaged in active research at other universities and institutions, which with this appointment now include MIT.
The McGovern Institute announced today that the winner of the 2019 Edward M. Scolnick Prize in Neuroscience is Rick Huganir, the Bloomberg Distinguished Professor of Neuroscience and Psychological and Brain Sciences at the Johns Hopkins University School of Medicine. Huganir is being recognized for his role in understanding the molecular and biochemical underpinnings of “synaptic plasticity,” changes at synapses that are key to learning and memory formation. The Scolnick Prize is awarded annually by the McGovern Institute to recognize outstanding advances in any field of neuroscience.
“Rick Huganir has made a huge impact on our understanding of how neurons communicate with one another, and the award honors him for this ground-breaking research”, says Robert Desimone, director of the McGovern Institute and the chair of the committee.
“He conducts basic research on the synapses between neurons but his work has important implications for our understanding of many brain disorders that impair synaptic function.”
As the past president of the Society for Neuroscience, the world’s largest organization of researchers that study the brain and nervous system, Huganir is well-known in the global neuroscience community. He also directs the Kavli Neuroscience Discovery Institute and serves as director of the Solomon H. Snyder Department of Neuroscience at Johns Hopkins University School of Medicine and co-director of the Johns Hopkins Brain Science Institute.
From the beginning of his research career, Huganir was interested in neurotransmitter receptors, key to signaling at the synapse. He conducted his thesis work in the laboratory of Efraim Racker at Cornell University, where he first reconstituted one of these receptors, the nicotinic acetylcholine receptor, allowing its biochemical characterization. He went on to become a postdoctoral fellow in Paul Greengard’s lab at The Rockefeller University in New York. During this time, he made the first functional demonstration that phosphorylation, a reversible chemical modification, affects neurotransmitter receptor activity. Phosphorylation was shown to regulate desensitization, the process by which neurotransmitter receptors stop reacting during prolonged exposure to the neurotransmitter.
Upon arriving at Johns Hopkins University, Huganir broadened this concept, finding that the properties and functions of other key receptors and channels, including the GABAA, AMPA, and kainite receptors, could be controlled through phosphorylation. By understanding the sites of phosphorylation and the effects of this modification, Huganir was laying the foundation for the next major steps from his lab: showing that these modifications affect the strength of synaptic connections and transmission, i.e. synaptic plasticity, and in turn, behavior and memory. Huganir also uncovered proteins that interact with neurotransmitter receptors and influence synaptic transmission and plasticity, thus uncovering another layer of molecular regulation. He went on to define how these accessory factors have such influence, showing that they impact the subcellular targeting and cycling of neurotransmitter receptors to and from the synaptic membrane. These mechanisms influence the formation of, for example, fear memory, as well as its erasure. Indeed, Huganir found that a specific type of AMPA receptor is added to synapses in the amygdala after a traumatic event, and that specific removal results in fear erasure in a mouse model.
Among many awards and honors, Huganir received the Young Investigator Award and the Julius Axelrod Award of the Society for Neuroscience. He was also elected to the American Academy of Arts and Sciences, the US National Academy of Sciences, and the Institute of Medicine. He is also a fellow of the American Association for the Advancement of Science.
The Scolnick Prize was first awarded in 2004, and was established by Merck in honor of Edward M. Scolnick who was President of Merck Research Laboratories for 17 years. Scolnick is currently a core investigator at the Broad Institute, and chief scientist emeritus of the Stanley Center for Psychiatric Research at Broad Institute.
Huganir will deliver the Scolnick Prize lecture at the McGovern Institute on May 8, 2019 at 4:00pm in the Singleton Auditorium of MIT’s Brain and Cognitive Sciences Complex (Bldg 46-3002), 43 Vassar Street in Cambridge. The event is free and open to the public.