Empowering faculty partnerships across the globe

MIT faculty share their creative and technical talent on campus as well as across the globe, compounding the Institute’s impact through strong international partnerships. Thanks to the MIT Global Seed Funds (GSF) program, managed by the MIT International Science and Technology Initiatives (MISTI), more of these faculty members will be able to build on these relationships to develop ideas and create new projects.

“This MISTI fund was extremely helpful in consolidating our collaboration and has been the start of a long-term interaction between the two teams,” says 2017 GSF awardee Mehrdad Jazayeri, associate professor of brain and cognitive sciences and investigator at the McGovern Institute for Brain Research. “We have already submitted multiple abstracts to conferences together, mapped out several ongoing projects, and secured international funding thanks to the preliminary progress this seed fund enabled.”

This year, the 28 funds that comprise MISTI GSF received 232 MIT applications. Over $2.3 million was awarded to 107 projects from 23 departments across the entire Institute. This brings the amount awarded to $22 million over the 12-year life of the program. Besides supporting faculty, these funds also provide meaningful educational opportunities for students. The majority of GSF teams include students from MIT and international collaborators, bolstering both their research portfolios and global experience.

“This project has had important impact on my grad student’s education and development. She was able to apply techniques she has learned to a new and challenging system, mentor an international student, participate in a major international meeting, and visit CEA,” says Professor of Chemistry Elizabeth Nolan, a 2017 GSF awardee.

On top of these academic and research goals, students are actively broadening their cultural experience and scope. “The environment at CEA differs enormously from MIT because it is a national lab and because lab structure and graduate education in France is markedly different than at MIT,” Nolan continues. “At CEA, she had the opportunity to present research to distinguished international colleagues.”

These impactful partnerships unite faculty teams behind common goals to tackle worldwide challenges, helping to develop solutions that would not be possible without international collaboration. 2017 GSF winner Emilio Bizzi, professor emeritus of brain and cognitive sciences and emeritus investigator at the McGovern Institute, articulated the advantage of combining these individual skills within a high-level team. “The collaboration among researchers was valuable in sharing knowledge, experience, skills and techniques … as well as offering the probability of future development of systems to aid in rehabilitation of patients suffering TBI.”

The research opportunities that grow from these seed funds often lead to published papers and additional funding leveraged from early results. The next call for proposals will be in mid-May.

MISTI creates applied international learning opportunities for MIT students that increase their ability to understand and address real-world problems. MISTI collaborates with partners at MIT and beyond, serving as a vital nexus of international activity and bolstering the Institute’s research mission by promoting collaborations between MIT faculty members and their counterparts abroad.

Enabling coronavirus detection using CRISPR-Cas13: An open-access SHERLOCK research protocol

The recent coronavirus (COVID-19) outbreak presents enormous challenges for global health. To aid the global effort, Broad Institute of MIT and Harvard, the McGovern Institute for Brain Research at MIT, and our partner institutions have committed to freely providing information that may be helpful, including by sharing information that may be able to support the development of potential diagnostics.

As part of this effort, Feng Zhang, Omar Abudayyeh, and Jonathan Gootenberg have developed a research protocol, applicable to purified RNA, that may inform the development of CRISPR-based diagnostics for COVID-19.

This initial research protocol is not a diagnostic test and has not been tested on patient samples. Any diagnostic would need to be developed and validated for clinical use and would need to follow all local regulations and best practices.

The research protocol provides the basic framework for establishing a SHERLOCK-based COVID-19 test using paper strips.

The team welcomes researchers to contact them for assistance or guidance and can provide a starter kit to test this system, as available, for researchers working with COVID-19 samples.

The SHERLOCK protocol

The CRISPR-Cas13-based SHERLOCK system has been previously shown to accurately detect the presence of a number of different viruses in patient samples. The system searches for unique nucleic acid signatures and uses a test strip similar to a pregnancy test to provide a visual readout. After dipping a paper strip into a prepared sample, a line appears on the paper to indicate whether the virus is present.

Using synthetic COVID-19 RNA fragments, the team designed and tested two RNA guides that recognize two signatures of COVID-19. When combined with the Cas13 protein, these form a SHERLOCK system capable of detecting the presence of COVID-19 viral RNA.

The research protocol involves three steps. It can be used with the same RNA samples that have been extracted for current qPCR tests:

  1. Incubate extracted RNA with isothermal amplification reaction for 25 min at 42 C
  2. Incubate reaction from step 1 with Cas13 protein, guide RNA, and reporter molecule for 30 min at 37 C
  3. Dip the test strip into reaction from step 2, and result should appear within five minutes.

Further details which researchers and laboratories can follow (including guide RNA sequences), can be found in the .pdf protocol, which is available here and has been submitted to bioRxiv. The protocol will be updated as the team continues experiments in parallel and in partnership with those around the world seeking to address this outbreak. The researchers will continue to update this page with the most advanced solutions.

Necessary plasmids are available through the Zhang Lab Addgene repository, and other materials are commercially available. Details for how to obtain these materials are described in the protocol.

What’s next

The SHERLOCK diagnostic system has demonstrated success in other settings. The research team hopes the protocol is a useful step towards creating a system for detecting COVID-19 in patient samples using a simple readout. Further optimization, production, testing, and verification are still needed. Any diagnostic would need to follow all local regulations, best practices, and validation before it could become of actual clinical use. The researchers will continue to release and share protocol updates, and welcome updates from the community.

Organizations in any country interested in further developing and deploying this system for COVID-19 response can freely use the scientific instructions provided here and can email sherlock@broadinstitute.org for further free support, including guidance on developing a starter kit with the Cas13 protein, guide RNA, reporter molecule, and isothermal amplification primers.

Acknowledgments: The research team wishes to acknowledge support from the NIH (1R01- MH110049 and 1DP1-HL141201 grants); the Howard Hughes Medical Institute; McGovern Institute for Brain Research at MIT; the Poitras Center for Affective Disorders Research at MIT; Open Philanthropy Project; James and Patricia Poitras; and Robert Metcalfe.

Declaration of conflicts of interest: F.Z., O.O.A., and J.S.G. are inventors on patents related to Cas13, SHERLOCK, and CRISPR diagnostics, and are co-founders, scientific advisors, and hold equity interests in Sherlock Biosciences, Inc.

 

Joshua Sanes awarded the 2020 Scolnick Prize

The McGovern Institute announced today that Joshua Sanes is the 2020 recipient of the Edward M. Scolnick Prize in Neuroscience. Sanes is being recognized for his numerous contributions to our understanding of synapse development. It was Sanes who focused the power of molecular genetics toward understanding how synapses are built. He is currently the Jeff C. Tarr Professor of Molecular and Cellular Biology and the Paul J. Finnegan Family Director at the Center for Brain Science at Harvard University.

“We have followed Josh’s work for many years, and the award honors the profound impact he has had on neuroscience” says Robert Desimone, director of the McGovern Institute and the chair of the committee. “His work on synapse development and connectivity is critical to understanding brain disorders, and will also be essential to deciphering the highest functions of the brain.”

Individual neurons are labeled in the hippocampus of the Brainbow mouse. The Sanes lab developed this method, yielding some of the most iconic images in neuroscience. Image: Josh Sanes

While the space between neurons at the synapse is called a cleft, it has a defined structure, and as a postdoctoral fellow and faculty member at Washington University, Sanes studied the extracellular matrix proteins that line this region in the motor system. This work provided a critical entry point to studying synaptic development in the central nervous system and Sanes went on to examine how synapses form with exquisite specificity. In pursuit of understanding interactions in the nervous system, Sanes developed novel cell-marking methods that allow neuronal connectivity to be traced using multi-colored fluorescent markers. This work led to development of the ‘Brainbow’ mouse, yielding some of the most striking and iconic images in recent neuroscience. This line of research has recently leveraged modern sequencing techniques that have even identified an entirely novel cell type in the long-studied retina. The methodologies and findings from the Sanes lab have had a global impact, and deepened our understanding of how neurons find one another and connect.

Sanes becomes the 16th researcher to win the prestigious prize, established in 2004 by Merck to honor Scolnick, who spent 17 years holding the top research post at Merck Research Laboratories. Sanes will deliver the Scolnick Prize lecture at the McGovern Institute on April 27th, 2020 at 4:00pm in the Singleton Auditorium of MIT’s Brain and Cognitive Sciences Complex (Bldg 46-3002), 43 Vassar Street in Cambridge. The event is free and open to the public.

 

Mehrdad Jazayeri and Hazel Sive awarded 2019 School of Science teaching prizes

The School of Science has announced that the recipients of the school’s 2019 Teaching Prizes for Graduate and Undergraduate Education are Mehrdad Jazayeri and Hazel Sive. Nominated by peers and students, the faculty members chosen to receive these prizes are selected to acknowledge their exemplary efforts in teaching graduate and undergraduate students.

Mehrdad Jazayeri, an associate professor in the Department of Brain and Cognitive Sciences and investigator at the McGovern Institute for Brain Research, is awarded the prize for graduate education for 9.014 (Quantitative Methods and Computational Models in Neuroscience). Earlier this year, he was recognized for excellence in graduate teaching by the Department of Brain and Cognitive Sciences and won a Graduate Student Council teaching award in 2016. In their nomination letters, peers and students alike remarked that he displays not only great knowledge, but extraordinary skill in teaching, most notably by ensuring everyone learns the material. Jazayeri does so by considering students’ diverse backgrounds and contextualizing subject material to relatable applications in various fields of science according to students’ interests. He also improves and adjusts the course content, pace, and intensity in response to student input via surveys administered throughout the semester.

Hazel Sive, a professor in the Department of Biology, member of the Whitehead Institute for Biomedical Research, and associate member of the Broad Institute of MIT and Harvard, is awarded the prize for undergraduate education. A MacVicar Faculty Fellow, she has been recognized with MIT’s highest undergraduate teaching award in the past, as well as the 2003 School of Science Teaching Prize for Graduate Education. Exemplified by her nominations, Sive’s laudable teaching career at MIT continues to receive praise from undergraduate students who take her classes. In recent post-course evaluations, students commended her exemplary and dedicated efforts to her field and to their education.

The School of Science welcomes nominations for the teaching prize in the spring semester of each academic year. Nominations can be submitted at the school’s website.

Call for Nominations: 2020 Scolnick Prize in Neuroscience

The McGovern Institute is now accepting nominations for the Scolnick Prize in Neuroscience, which recognizes an outstanding discovery or significant advance in any field of neuroscience, until December 15, 2019.

About the Scolnick Prize

The prize is named in honor of Edward M. Scolnick, who stepped down as president of Merck Research Laboratories in December 2002 after holding Merck’s top research post for 17 years. The prize, which is endowed through a gift from Merck to the McGovern Institute, consists of a $150,000 award, plus an inscribed gift. The recipient presents a public lecture at MIT, hosted by the McGovern Institute and followed by a dinner in Spring 2020.

Nomination Process

Candidates for the award must be nominated by individuals affiliated with universities, hospitals, medical schools, or research institutes, with a background in neuroscience. Self-nomination is not permitted. Each nomination should include a biosketch or CV of the nominee and a letter of nomination with a summary and analysis of the nominee’s major contributions to the field of neuroscience. Up to two representative reprints will be accepted. The winner, selected by a committee appointed by the director of the McGovern Institute, will be announced in January 2020.

More information about the Scolnick Prize, including details about the nomination process, selection committee, and past Scolnick Prize recipients, can be found on our website.

submit nomination

Ed Boyden wins premier Royal Society honor

Edward S. Boyden, the Y. Eva Tan Professor in Neurotechnology at MIT, has been awarded the 2019 Croonian Medal and Lecture by the Royal Society. Twenty-four medals and awards are announced by the Royal Society each year, honoring exceptional researchers who are making outstanding contributions to science.

“The Royal Society gives an array of medals and awards to scientists who have done exceptional, ground-breaking work,” explained Sir Venki Ramakrishnan, President of the Royal Society. “This year, it is again a pleasure to see these awards bestowed on scientists who have made such distinguished and far-reaching contributions in their fields. I congratulate and thank them for their efforts.”

Boyden wins the medal and lecture in recognition of his research that is expanding our understanding of the brain. This includes his critical role in the development of optogenetics, a technique for controlling brain activity with light, and his invention of expansion microscopy. Croonian Medal laureates include notable luminaries of science and neurobiology.

“It is a great honor to be selected to receive this medal, especially
since it was also given to people such as Santiago Ramon y Cajal, the
founder of modern neuroscience,” says Boyden. “This award reflects the great work of many fantastic students, postdocs, and collaborators who I’ve had the privilege to work with over the years.”

The award includes an invitation to deliver the premier British lecture in the biological sciences, given annually at the Royal Society in London. At the lecture, the winner is awarded a medal and a gift of £10,000. This announcement comes shortly after Boyden was co-awarded the Warren Alpert Prize for his role in developing optogenetics.

History of the Croonian Medal and Lecture

William Croone, pictured, envisioned an annual lecture that is the premier biological sciences medal and lecture at the Royal Society
William Croone, FRS Photo credit: Royal College of Physicians, London

The lectureship was conceived by William Croone FRS, one of the original Fellows of the Society based in London. Among the papers left on his death in 1684 were plans to endow two lectureships, one at the Royal Society and the other at the Royal College of Physicians. His widow later bequeathed the means to carry out the scheme. The lecture series began in 1738.

 

 

Ed Boyden holds the titles of Investigator, McGovern Institute; Y. Eva Tan Professor in Neurotechnology at MIT; Leader, Synthetic Neurobiology Group, MIT Media Lab; Professor, Biological Engineering, Brain and Cognitive Sciences, MIT Media Lab; Co-Director, MIT Center for Neurobiological Engineering; Member, MIT Center for Environmental Health Sciences, Computational and Systems Biology Initiative, and Koch Institute.

Ed Boyden receives 2019 Warren Alpert Prize

The 2019 Warren Alpert Foundation Prize has been awarded to four scientists, including Ed Boyden, for pioneering work that launched the field of optogenetics, a technique that uses light-sensitive channels and pumps to control the activity of neurons in the brain with a flick of a switch. He receives the prize alongside Karl Deisseroth, Peter Hegemann, and Gero Miesenböck, as outlined by The Warren Alpert Foundation in their announcement.

Harnessing light and genetics, the approach illuminates and modulates the activity of neurons, enables study of brain function and behavior, and helps reveal activity patterns that can overcome brain diseases.

Boyden’s work was key to envisioning and developing optogenetics, now a core method in neuroscience. The method allows brain circuits linked to complex behavioral processes, such as those involved in decision-making, feeding, and sleep, to be unraveled in genetic models. It is also helping to elucidate the mechanisms underlying neuropsychiatric disorders, and has the potential to inspire new strategies to overcome brain disorders.

“It is truly an honor to be included among the extremely distinguished list of winners of the Alpert Award,” says Boyden, the Y. Eva Tan Professor in Neurotechnology at the McGovern Institute, MIT. “To me personally, it is exciting to see the relatively new field of neurotechnology recognized. The brain implements our thoughts and feelings. It makes us who we are. This mysteries and challenge requires new technologies to make the brain understandable and repairable. It is a great honor that our technology of optogenetics is being thus recognized.”

While they were students, Boyden, and fellow awardee Karl Deisseroth, brainstormed about how microbial opsins could be used to mediate optical control of neural activity. In mid-2004, the pair collaborated to show that microbial opsins can be used to optically control neural activity. Upon launching his lab at MIT, Boyden’s team developed the first optogenetic silencing tool, the first effective optogenetic silencing in live mammals, noninvasive optogenetic silencing, and single-cell optogenetic control.

“The discoveries made by this year’s four honorees have fundamentally changed the landscape of neuroscience,” said George Q. Daley, dean of Harvard Medical School. “Their work has enabled scientists to see, understand and manipulate neurons, providing the foundation for understanding the ultimate enigma—the human brain.”

Beyond optogenetics, Boyden has pioneered transformative technologies that image, record, and manipulate complex systems, including expansion microscopy, robotic patch clamping, and even shrinking objects to the nanoscale. He was elected this year to the ranks of the National Academy of Sciences, and selected as an HHMI Investigator. Boyden has received numerous awards for this work, including the 2018 Gairdner International Prize and the 2016 Breakthrough Prize in Life Sciences.

The Warren Alpert Foundation, in association with Harvard Medical School, honors scientists whose work has improved the understanding, prevention, treatment or cure of human disease. Prize recipients are selected by the foundation’s scientific advisory board, which is composed of distinguished biomedical scientists and chaired by the dean of Harvard Medical School. The honorees will share a $500,000 prize and will be recognized at a daylong symposium on Oct. 3 at Harvard Medical School.

Ed Boyden holds the titles of Investigator, McGovern Institute; Y. Eva Tan Professor in Neurotechnology at MIT; Leader, Synthetic Neurobiology Group, Media Lab; Associate Professor, Biological Engineering, Brain and Cognitive Sciences, Media Lab; Co-Director, MIT Center for Neurobiological Engineering; Member, MIT Center for Environmental Health Sciences, Computational and Systems Biology Initiative, and Koch Institute.

Mark Harnett receives a 2019 McKnight Scholar Award

McGovern Institute investigator Mark Harnett is one of six young researchers selected to receive a prestigious 2019 McKnight Scholar Award. The award supports his research “studying how dendrites, the antenna-like input structures of neurons, contribute to computation in neural networks.”

Harnett examines the biophysical properties of single neurons, ultimately aiming to understand how these relate to the complex computations that underlie behavior. His lab was the first to examine the biophysical properties of human dendrites. The Harnett lab found that human neurons have distinct properties, including increased dendritic compartmentalization that could allow more complex computations within single neurons. His lab recently discovered that such dendritic computations are not rare, or confined to specific behaviors, but are a widespread and general feature of neuronal activity.

“As a young investigator, it is hard to prioritize so many exciting directions and ideas,” explains Harnett. “I really want to thank the McKnight Foundation, both for the support, but also for the hard work the award committee puts into carefully thinking about and giving feedback on proposals. It means a lot to get this type of endorsement from a seriously committed and distinguished committee, and their support gives even stronger impetus to pursue this research direction.”

The McKnight Foundation has supported neuroscience research since 1977, and provides three prominent awards, with the Scholar award aimed at supporting young scientists, and drawing applications from the strongest young neuroscience faculty across the US. William L. McKnight (1887-1979) was an early leader of the 3M Company and had a personal interest in memory and brain diseases. The McKnight Foundation was established with this focus in mind, and the Scholar Award provides $75,000 per year for three years to support cutting edge neuroscience research.

 

McGovern Institute postcard collection

A collection of 13 postcards arranged in columns.
The McGovern Institute postcard collection, 2023.

The McGovern Institute may be best known for its scientific breakthroughs, but a captivating series of brain-themed postcards developed by McGovern researchers and staff now reveals the institute’s artistic side.

What began in 2017 with a series of brain anatomy postcards inspired by the U.S. Works Projects Administration’s iconic national parks posters, has grown into a collection of twelve different prints, each featuring a unique fusion of neuroscience and art.

More information about each series in the McGovern Institute postcard collection, including the color-your-own mindfulness postcards, can be found below.

Mindfulness Postcard Series, 2023

In winter 2023, the institute released its mindfulness postcard series, a collection of four different neuroscience-themed illustrations that can be colored in with pencils, markers, or paint. The postcard series was inspired by research conducted in John Gabrieli’s lab, which found that practicing mindfulness reduced children’s stress levels and negative emotions during the pandemic. These findings contribute to a growing body of evidence that practicing mindfulness — focusing awareness on the present, typically through meditation, but also through coloring — can change patterns of brain activity associated with emotions and mental health.

Download and color your own postcards.

Genes

The McGovern Institute is at the cutting edge of applications based on CRISPR, a genome editing tool pioneered by McGovern Investigator Feng Zhang. Hidden within this DNA-themed postcard is a clam, virus, bacteriophage, snail, and the word CRISPR. Click the links to learn how these hidden elements relate to genetic engineering research at the McGovern Institute.

 

Line art showing strands of DNA and the McGovern Institute logo.
The McGovern Institute’s “mindfulness” postcard series includes this DNA-themed illustration containing five hidden design elements related to McGovern research. Image: Joseph Laney

Neurons

McGovern researchers probe the nanoscale and cellular processes that are critical to brain function, including the complex computations conducted in neurons, to the synapses and neurotransmitters that facilitate messaging between cells. Find the mouse, worm, and microscope — three critical elements related to cellular and molecular neuroscience research at the McGovern Institute — in the postcard below.

 

Line art showing multiple neurons and the McGovern Institute logo.
The McGovern Institute’s “mindfulness” postcard series includes this neuron-themed illustration containing three hidden design elements related to McGovern research. Image: Joseph Laney

Human Brain

Cognitive neuroscientists at the McGovern Institute examine the brain processes that come together to inform our thoughts and understanding of the world.​ Find the musical note, speech bubbles, and human face in this postcard and click on the links to learn more about how these hidden elements relate to brain research at the McGovern Institute.

 

Line art of a human brain and the McGovern Institute logo.
The McGovern Institute’s “mindfulness” postcard series includes this brain-themed illustration containing three hidden design elements related to McGovern research. Image: Joseph Laney

Artificial Intelligence

McGovern researchers develop machine learning systems that mimic human processing of visual and auditory cues and construct algorithms to help us understand the complex computations made by the brain. Find the speech bubbles, DNA, and cochlea (spiral) in this postcard and click on the links to learn more about how these hidden elements relate to computational neuroscience research at the McGovern Institute.

Line art showing an artificial neural network in the shape of the human brain and the McGovern Institute logo.
The McGovern Institute’s “mindfulness” postcard series includes this AI-themed illustration containing three hidden design elements related to McGovern research. Image: Joseph Laney

Neuron Postcard Series, 2019

In 2019, the McGovern Institute released a second series of postcards based on the anatomy of a neuron. Each postcard includes text on the back side that describes McGovern research related to that specific part of the neuron. The descriptive text for each postcard is shown beloSynapse

Synapse

Snow melting off the branch of a bush at the water's edge creates a ripple effect in the pool of water below. Words at the bottom of the image say "It All Begins at the SYNAPSE"Signals flow through the nervous system from one neuron to the next across synapses.

Synapses are exquisitely organized molecular machines that control the transmission of information.

McGovern researchers are studying how disruptions in synapse function can lead to brain disorders like autism.

Image: Joseph Laney

Axon

Illustration of three bears hunting for fish in a flowing river with the words: "Axon: Where Action Finds Potential"The axon is the long, thin neural cable that carries electrical impulses called action potentials from the soma to synaptic terminals at downstream neurons.

Researchers at the McGovern Institute are developing and using tracers that label axons to reveal the elaborate circuit architecture of the brain.

Image: Joseph Laney

Soma

An elk stands on a rocky outcropping overlooking a large lake with an island in the center. Words at the top read: "Collect Your Thoughts at the Soma"The soma, or cell body, is the control center of the neuron, where the nucleus is located.

It connects the dendrites to the axon, which sends information to other neurons.

At the McGovern Institute, neuroscientists are targeting the soma with proteins that can activate single neurons and map connections in the brain.

Image: Joseph Laney

Dendrites

A mountain lake at sunset with colorful fish and snow from a distant mountaintop melting into the lake. Words say "DENDRITIC ARBOR"Long branching neuronal processes called dendrites receive synaptic inputs from thousands of other neurons and carry those signals to the cell body.

McGovern neuroscientists have discovered that human dendrites have different electrical properties from those of other species, which may contribute to the enhanced computing power of the human brain.

Image: Joseph Laney

Brain Anatomy Postcard Series, 2017

The original brain anatomy-themed postcard series, developed in 2017, was inspired by the U.S. Works Projects Administration’s iconic national parks posters created in the 1930s and 1940s. Each postcard includes text on the back side that describes McGovern research related to that specific part of the neuron. The descriptive text for each postcard is shown below.

Sylvian Fissure

Illustration of explorer in cave labeled with temporal and parietal letters
The Sylvian fissure is a prominent groove on the right side of the brain that separates the frontal and parietal lobes from the temporal lobe. McGovern researchers are studying a region near the right Sylvian fissure, called the rTPJ, which is involved in thinking about what another person is thinking.

Hippocampus

The hippocampus, named after its resemblance to the seahorse, plays an important role in memory. McGovern researchers are studying how changes in the strength of synapses (connections between neurons) in the hippocampus contribute to the formation and retention of memories.

Basal Ganglia

The basal ganglia are a group of deep brain structures best known for their control of movement. McGovern researchers are studying how the connections between the cerebral cortex and a part of the basal ganglia known as the striatum play a role in emotional decision making and motivation.

 

 

 

The arcuate fasciculus is a bundle of axons in the brain that connects Broca’s area, involved in speech production, and Wernicke’s area, involved in understanding language. McGovern researchers have found a correlation between the size of this structure and the risk of dyslexia in children.

 

 

Order and Share

To order your own McGovern brain postcards, contact our colleagues at the MIT Museum, where proceeds will support current and future exhibitions at the growing museum.

Please share a photo of yourself in your own lab (or natural habitat) with one of our cards on social media. Tell us what you’re studying and don’t forget to tag us @mcgovernmit using the hashtag #McGovernPostcards.

Ed Boyden elected to National Academy of Sciences

Ed Boyden has been elected to join the National Academy of Sciences (NAS). The organization, established by an act of Congress during the height of the Civil War, was founded to provide independent and objective advice on scientific matters to the nation, and is actively engaged in furthering science in the United States. Each year NAS members recognize fellow scientists through election to the academy based on their distinguished and continuing achievements in original research.

“I’m very honored and grateful to have been elected to the NAS,” says Boyden. “This is a testament to the work of many graduate students, postdoctoral scholars, research scientists, and staff at MIT who have worked with me over the years, and many collaborators and friends at MIT and around the world who have helped our group on this mission to advance neuroscience through new tools and ways of thinking.”

Boyden’s research creates and applies technologies that aim to expand our understanding of the brain. He notably co-invented optogenetics as an independent side collaboration, conducted in parallel to his PhD studies, a game-changing technology that has revolutionized neurobiology. This technology uses targeted expression of light-sensitive channels and pumps to activate or suppress neuronal activity in vivo using light. Optogenetics quickly swept the field of neurobiology and has been leveraged to understand how specific neurons and brain regions contribute to behavior and to disease.

His research since has an overarching focus on understanding the brain. To this end, he and his lab have the ambitious goal of developing technologies that can map, record, and manipulate the brain. This has led, as selected examples, to the invention of expansion microscopy, a super-resolution imaging technology that can capture neuron’s microstructures and reveal their complex connections, even across large-scale neural circuits; voltage-sensitive fluorescent reporters that allow neural activity to be monitored in vivo; and temporal interference stimulation, a non-invasive brain stimulation technique that allows selective activation of subcortical brain regions.

“We are all incredibly happy to see Ed being elected to the academy,” says Robert Desimone, director of the McGovern Institute for Brain Research at MIT. “He has been consistently innovative, inventing new ways of manipulating and observing neurons that are revolutionizing the field of neuroscience.”

This year the NAS, an organization that includes over 500 Nobel Laureates, elected 100 new members and 25 foreign associates. Three MIT professors were elected this year, with Paula T. Hammond (David H. Koch (1962) Professor of Engineering and Department Head, Chemical Engineering) and Aviv Regev (HHMI Investigator and Professor in the Department of Biology) being elected alongside Boyden. Boyden becomes the seventh member of the McGovern Institute faculty to join the National Academy of Sciences.

The formal induction ceremony for new NAS members, during which they sign the ledger whose first signatory is Abraham Lincoln, will be held at the Academy’s annual meeting in Washington D.C. next spring.