Ian Wickersham

Making Connections

Ian Wickersham develops genetic tools that provide more powerful and precise ways to study the organization of the brain. His lab invents techniques for targeting neurons based on their synaptic connectivity and gene expression patterns in order to cause them to express genes that allow the neurons to be studied and controlled by neuroscientists and clinicians. The goal of Wickersham’s work is to provide neuroscience with more effective ways of studying the brain, and potentially to provide clinical neurology with more effective ways of treating disorders of the brain.

Polina Anikeeva

Probing the Mind-Body Connection

Polina Anikeeva develops cutting-edge neurotechnologies to probe the flow of information between the brain and peripheral organs in the body.

The brain and the digestive tract are in constant communication, relaying signals that influence our behavior and mental state. Anikeeva’s lab has developed ultrathin, flexible fibers that probe this extensive communication network. The multifunctional fibers are compatible the body’s soft tissue and are equipped with light emitters for activating subsets of cells and tiny channels for delivering genetic cargo or drugs. By deploying these probes within the gastrointestinal tract, Anikeeva’s team has explored how gut-brain circuits contribute to complex behaviors like decision-making and mood.

Anikeeva’s group is also developing magnetic nanoparticles to modulate neural activity wirelessly. Working in conjunction with biological receptors, these non-invasive nanoscale transducers could replace wires in deep-brain stimulation for Parkinson’s disease, or control stress hormones released by adrenal glands. Ultimately, Anikeeva hopes these novel technologies will improve therapies and predictive diagnostics for achieving healthy minds in healthy bodies.

Ed Boyden

Engineering the Brain

Ed Boyden develops advanced technologies for analyzing, engineering, and simulating brain circuits to reveal and repair the fundamental mechanisms behind complex brain processes.

Boyden may be best known for pioneering optogenetics, a powerful method that enables scientists to control neurons using light. He also led the team that created expansion microscopy, which expands nanoscale features in a cell to make them visible using conventional microscopes. In addition, his lab develops methods so that many signals can be imaged in living cells at the same time. He continues to invent new tools, and works to systematically integrate these tools to enable biologically accurate computer simulations of the brain.

Is it worth the risk?

During the Klondike Gold Rush, thousands of prospectors climbed Alaska’s dangerous Chilkoot Pass in search of riches. McGovern scientists are exploring how a once-overlooked part of the brain might be at the root of cost-benefit decisions like these. McGovern researchers are studying how the brain balances risk and reward to make decisions.

Is it worth speeding up on the highway to save a few minutes’ time? How about accepting a job that pays more, but requires longer hours in the office?

Scientists call these types of real-life situations cost-benefit conflicts. Choosing well is an essential survival ability—consider the animal that must decide when to expose itself to predation to gather more food.

Now, McGovern researchers are discovering that this fundamental capacity to make decisions may originate in the basal ganglia—a brain region once considered unimportant to the human
experience—and that circuits associated with this structure may play a critical role in determining our state of mind.

Anatomy of decision-making

A few years back, McGovern investigator Ann Graybiel noticed that in the brain imaging literature, a specific part of the cortex called the pregenual anterior cingulate cortex or pACC, was implicated in certain psychiatric disorders as well as tasks involving cost-benefit decisions. Thanks to her now classic neuroanatomical work defining the complex anatomy and function of the basal ganglia, Graybiel knew that the pACC projected back into the basal ganglia—including its largest cluster of neurons, the striatum.

The striatum sits beneath the cortex, with a mouse-like main body and curving tail. It seems to serve as a critical way-station, communicating with both the brain’s sensory and motor areas above, and the limbic system (linked to emotion and memory) below. Running through the striatum are striosomes, column-like neurochemical compartments. They wire down to a small, but important part of the brain called the substantia nigra, which houses the huge majority of the brain’s dopamine neurons—a key neurochemical heavily involved, much like the basal ganglia as a whole, in reward, learning, and movement. The pACC region related to mood control targeted these striosomes, setting up a communication line from the neocortex to the dopamine neurons.

Graybiel discovered these striosomes early in her career, and understood them to have distinct wiring from other compartments in the striatum, but picking out these small, hard-to-find striosomes posed a technological challenge—so it was exciting to have this intriguing link to the pACC and mood disorders.

Working with Ken-ichi Amemori, then a research scientist in her lab, she adapted a common human cost-benefit conflict test for macaque monkeys. The monkeys could elect to receive a food treat, but the treat would always be accompanied by an annoying puff of air to the eyes. Before they decided, a visual cue told them exactly how much treat they could get, and exactly how strong the air puff would be, so they could choose if the treat was worth it.

Normal monkeys varied their choices in a fairly rational manner, rejecting the treat whenever it seemed like the air puff was too strong, or the treat too small to be worth it—and this corresponded with activity in the pACC neurons. Interestingly, they found that some pACC neurons respond more when animals approach the combined offers, while other pACC neurons
fire more when the animals avoid the offers. “It is as though there are two opposing armies. And the one that wins, controls the state of the animal.” Moreover, when Graybiel’s team electrically stimulated these pACC neurons, the animals begin to avoid the offers, even offers that they normally would approach. “It is as though when the stimulation is on, they think the future is worse than it really is,” Graybiel says.

Intriguingly, this effect only worked in situations where the animal had to weigh the value of a cost against a benefit. It had no effect on a decision between two negatives or two positives, like two different sizes of treats. The anxiety drug diazepam also reversed the stimulatory effect, but again, only on cost-benefit choices. “This particular kind of mood-influenced cost-benefit
decision-making occurs not only under conflict conditions but in our regular day to day lives. For example: I know that if I eat too much chocolate, I might get fat, but I love it, I want it.”

Glass half empty

Over the next few years, Graybiel, with another research scientist in her lab, Alexander Friedman, unraveled the circuit behind the macaques’ choices. They adapted the test for rats and mice,
so that they could more easily combine the cellular and molecular technologies needed to study striosomes, such as optogenetics and mouse engineering.

They found that the cortex (specifically, the pre-limbic region of the prefrontal cortex in rodents) wires onto both striosomes and fast-acting interneurons that also target the striosomes. In a
healthy circuit, these interneurons keep the striosomes in check by firing off fast inhibitory signals, hitting the brakes before the striosome can get started. But if the researchers broke that corticalstriatal connection with optogenetics or chronic stress, the animals became reckless, going for the high-risk, high-reward arm of the maze like a gambler throwing caution to the wind. If they amplified this inhibitory interneuron activity, they saw the opposite effect. With these techniques, they could block the effects of prior chronic stress.

This summer, Graybiel and Amemori published another paper furthering the story and returning to macaques. It was still too difficult to hit striosomes, and the researchers could only stimulate the striatum more generally. However, they replicated the effects in past studies.

Many electrodes had no effect, a small number made the monkeys choose the reward more often. Nearly a quarter though made the monkeys more avoidant—and this effect correlated with a change in the macaques’ brainwaves in a manner reminiscent of patients with depression.

But the surprise came when the avoidant-producing stimulation was turned off, the effects lasted unexpectedly long, only returning to normal on the third day.

Graybiel was stunned. “This is very important, because changes in the brain can get set off and have a life of their own,” she says. “This is true for some individuals who have had a terrible experience, and then live with the aftermath, even to the point of suffering from post-traumatic stress disorder.”

She suspects that this persistent state may actually be a form of affect, or mood. “When we change this decision boundary, we’re changing the mood, such that the animal overestimates cost, relative to benefit,” she explains. “This might be like a proxy state for pessimistic decision-making experienced during anxiety and depression, but may also occur, in a milder form, in you and me.”

Graybiel theorizes that this may tie back into the dopamine neurons that the striosomes project to: if this avoidance behavior is akin to avoidance observed in rodents, then they are stimulating a circuit that ultimately projects to dopamine neurons of the substantia nigra. There, she believes, they could act to suppress these dopamine neurons, which in turn project to the rest of the brain, creating some sort of long-term change in their neural activity. Or, put more simply, stimulation of these circuits creates a depressive funk.

Bottom up

Three floors below the Graybiel lab, postdoc Will Menegas is in the early stages of his own work untangling the role of dopamine and the striatum in decision-making. He joined Guoping Feng’s lab this summer after exploring the understudied “tail of the striatum” at Harvard University.

While dopamine pathways influence many parts of the brain, examination of connections to the striatum have largely focused on the frontmost part of the striatum, associated with valuations.

But as Menegas showed while at Harvard, dopamine neurons that project to the rear of the striatum are different. Those neurons get their input from parts of the brain associated with general arousal and sensation—and instead of responding to rewards, they respond to novelty and intense stimuli, like air puffs and loud noises.

In a new study published in Nature Neuroscience, Menegas used a neurotoxin to disrupt the dopamine projection from the substantia nigra to the posterior striatum to see how this circuit influences behavior. Normal mice approach novel items cautiously and back away after sniffing at them, but the mice in Menegas’ study failed to back away. They stopped avoiding a port that gave an air puff to the face and they didn’t behave like normal mice when Menegas dropped a strange or new object—say, a lego—into their cage. Disrupting the nigral-posterior striatum
seemed to turn off their avoidance habit.

“These neurons reinforce avoidance the same way that canonical dopamine neurons reinforce approach,” Menegas explains. It’s a new role for dopamine, suggesting that there may be two different and distinct systems of reinforcement, led by the same neuromodulator in different parts of the striatum.

This research, and Graybiel’s discoveries on cost-benefit decision circuits, share clear parallels, though the precise links between the two phenomena are yet to be fully determined. Menegas plans to extend this line of research into social behavior and related disorders like autism in marmoset monkeys.

“Will wants to learn the methods that we use in our lab to work on marmosets,” Graybiel says. “I think that working together, this could become a wonderful story, because it would involve social interactions.”

“This a very new angle, and it could really change our views of how the reward system works,” Feng says. “And we have very little understanding of social circuits so far and especially in higher organisms, so I think this would be very exciting. Whatever we learn, it’s going to be new.”

Human choices

Based on their preexisting work, Graybiel’s and Menegas’ projects are well-developed—but they are far from the only McGovern-based explorations into ways this brain region taps into our behaviors. Maiya Geddes, a visiting scientist in John Gabrieli’s lab, has recently published a paper exploring the little-known ways that aging affects the dopamine-based nigral-striatum-hippocampus learning and memory systems.

In Rebecca Saxe’s lab, postdoc Livia Tomova just kicked off a new pilot project using brain imaging to uncover dopamine-striatal circuitry behind social craving in humans and the urge to rejoin peers. “Could there be a craving response similar to hunger?” Tomova wonders. “No one has looked yet at the neural mechanisms of this.”

Graybiel also hopes to translate her findings into humans, beginning with collaborations at the Pizzagalli lab at McLean Hospital in Belmont. They are using fMRI to study whether patients
with anxiety and depression show some of the same dysfunctions in the cortico-striatal circuitry that she discovered in her macaques.

If she’s right about tapping into mood states and affect, it would be an expanded role for the striatum—and one with significant potential therapeutic benefits. “Affect state” colors many psychological functions and disorders, from memory and perception, to depression, chronic stress, obsessive-compulsive disorder, and PTSD.

For a region of the brain once dismissed as inconsequential, McGovern researchers have shown the basal ganglia to influence not only our choices but our state of mind—suggesting that this “primitive” brain region may actually be at the heart of the human experience.

 

 

Electrical properties of dendrites help explain our brain’s unique computing power

Neurons in the human brain receive electrical signals from thousands of other cells, and long neural extensions called dendrites play a critical role in incorporating all of that information so the cells can respond appropriately.

Using hard-to-obtain samples of human brain tissue, MIT neuroscientists have now discovered that human dendrites have different electrical properties from those of other species. Their studies reveal that electrical signals weaken more as they flow along human dendrites, resulting in a higher degree of electrical compartmentalization, meaning that small sections of dendrites can behave independently from the rest of the neuron.

These differences may contribute to the enhanced computing power of the human brain, the researchers say.

“It’s not just that humans are smart because we have more neurons and a larger cortex. From the bottom up, neurons behave differently,” says Mark Harnett, the Fred and Carole Middleton Career Development Assistant Professor of Brain and Cognitive Sciences. “In human neurons, there is more electrical compartmentalization, and that allows these units to be a little bit more independent, potentially leading to increased computational capabilities of single neurons.”

Harnett, who is also a member of MIT’s McGovern Institute for Brain Research, and Sydney Cash, an assistant professor of neurology at Harvard Medical School and Massachusetts General Hospital, are the senior authors of the study, which appears in the Oct. 18 issue of Cell. The paper’s lead author is Lou Beaulieu-Laroche, a graduate student in MIT’s Department of Brain and Cognitive Sciences.

Neural computation

Dendrites can be thought of as analogous to transistors in a computer, performing simple operations using electrical signals. Dendrites receive input from many other neurons and carry those signals to the cell body. If stimulated enough, a neuron fires an action potential — an electrical impulse that then stimulates other neurons. Large networks of these neurons communicate with each other to generate thoughts and behavior.

The structure of a single neuron often resembles a tree, with many branches bringing in information that arrives far from the cell body. Previous research has found that the strength of electrical signals arriving at the cell body depends, in part, on how far they travel along the dendrite to get there. As the signals propagate, they become weaker, so a signal that arrives far from the cell body has less of an impact than one that arrives near the cell body.

Dendrites in the cortex of the human brain are much longer than those in rats and most other species, because the human cortex has evolved to be much thicker than that of other species. In humans, the cortex makes up about 75 percent of the total brain volume, compared to about 30 percent in the rat brain.

Although the human cortex is two to three times thicker than that of rats, it maintains the same overall organization, consisting of six distinctive layers of neurons. Neurons from layer 5 have dendrites long enough to reach all the way to layer 1, meaning that human dendrites have had to elongate as the human brain has evolved, and electrical signals have to travel that much farther.

In the new study, the MIT team wanted to investigate how these length differences might affect dendrites’ electrical properties. They were able to compare electrical activity in rat and human dendrites, using small pieces of brain tissue removed from epilepsy patients undergoing surgical removal of part of the temporal lobe. In order to reach the diseased part of the brain, surgeons also have to take out a small chunk of the anterior temporal lobe.

With the help of MGH collaborators Cash, Matthew Frosch, Ziv Williams, and Emad Eskandar, Harnett’s lab was able to obtain samples of the anterior temporal lobe, each about the size of a fingernail.

Evidence suggests that the anterior temporal lobe is not affected by epilepsy, and the tissue appears normal when examined with neuropathological techniques, Harnett says. This part of the brain appears to be involved in a variety of functions, including language and visual processing, but is not critical to any one function; patients are able to function normally after it is removed.

Once the tissue was removed, the researchers placed it in a solution very similar to cerebrospinal fluid, with oxygen flowing through it. This allowed them to keep the tissue alive for up to 48 hours. During that time, they used a technique known as patch-clamp electrophysiology to measure how electrical signals travel along dendrites of pyramidal neurons, which are the most common type of excitatory neurons in the cortex.

These experiments were performed primarily by Beaulieu-Laroche. Harnett’s lab (and others) have previously done this kind of experiment in rodent dendrites, but his team is the first to analyze electrical properties of human dendrites.

Unique features

The researchers found that because human dendrites cover longer distances, a signal flowing along a human dendrite from layer 1 to the cell body in layer 5 is much weaker when it arrives than a signal flowing along a rat dendrite from layer 1 to layer 5.

They also showed that human and rat dendrites have the same number of ion channels, which regulate the current flow, but these channels occur at a lower density in human dendrites as a result of the dendrite elongation. They also developed a detailed biophysical model that shows that this density change can account for some of the differences in electrical activity seen between human and rat dendrites, Harnett says.

Nelson Spruston, senior director of scientific programs at the Howard Hughes Medical Institute Janelia Research Campus, described the researchers’ analysis of human dendrites as “a remarkable accomplishment.”

“These are the most carefully detailed measurements to date of the physiological properties of human neurons,” says Spruston, who was not involved in the research. “These kinds of experiments are very technically demanding, even in mice and rats, so from a technical perspective, it’s pretty amazing that they’ve done this in humans.”

The question remains, how do these differences affect human brainpower? Harnett’s hypothesis is that because of these differences, which allow more regions of a dendrite to influence the strength of an incoming signal, individual neurons can perform more complex computations on the information.

“If you have a cortical column that has a chunk of human or rodent cortex, you’re going to be able to accomplish more computations faster with the human architecture versus the rodent architecture,” he says.

There are many other differences between human neurons and those of other species, Harnett adds, making it difficult to tease out the effects of dendritic electrical properties. In future studies, he hopes to explore further the precise impact of these electrical properties, and how they interact with other unique features of human neurons to produce more computing power.

The research was funded by the National Sciences and Engineering Research Council of Canada, the Dana Foundation David Mahoney Neuroimaging Grant Program, and the National Institutes of Health.

Mark Harnett’s “Holy Grail” experiment

Neurons in the human brain receive electrical signals from thousands of other cells, and long neural extensions called dendrites play a critical role in incorporating all of that information so the cells can respond appropriately.

Using hard-to-obtain samples of human brain tissue, McGovern neuroscientist Mark Harnett has now discovered that human dendrites have different electrical properties from those of other species. Their studies reveal that electrical signals weaken more as they flow along human dendrites, resulting in a higher degree of electrical compartmentalization, meaning that small sections of dendrites can behave independently from the rest of the neuron.

These differences may contribute to the enhanced computing power of the human brain, the researchers say.

Mark Harnett named Vallee Foundation Scholar

The Bert L and N Kuggie Vallee Foundation has named McGovern Institute investigator Mark Harnett a 2018 Vallee Scholar. The Vallee Scholars Program recognizes original, innovative, and pioneering work by early career scientists at a critical juncture in their careers and provides $300,000 in discretionary funds to be spent over four years for basic biomedical research. Harnett is among five researchers named to this year’s Vallee Scholars Program.

Harnett, who is also the Fred and Carole Middleton Career Development Assistant Professor in the Department of Brain and Cognitive Sciences, is being recognized for his work exploring how the biophysical features of neurons give rise to the computational power of the brain. By exploiting new technologies and approaches at the interface of biophysics and systems neuroscience, research in the Harnett lab aims to provide a new understanding of the biology underlying how mammalian brains learn. This may open new areas of research into brain disorders characterized by atypical learning and memory (such as dementia and schizophrenia) and may also have important implications for designing new, brain-inspired artificial neural networks.

The Vallee Foundation was established in 1996 by Bert and Kuggie Vallee to foster originality, creativity, and leadership within biomedical scientific research and medical education. The foundation’s goal to fund originality, innovation, and pioneering work “recognizes the future promise of these scientists who are dedicated to understanding fundamental biological processes.” Harnett joins a list of 24 Vallee Scholars, including McGovern investigator Feng Zhang, who have been appointed to the program since its inception in 2013.

Biologists discover function of gene linked to familial ALS

MIT biologists have discovered a function of a gene that is believed to account for up to 40 percent of all familial cases of amyotrophic lateral sclerosis (ALS). Studies of ALS patients have shown that an abnormally expanded region of DNA in a specific region of this gene can cause the disease.

In a study of the microscopic worm Caenorhabditis elegans, the researchers found that the gene has a key role in helping cells to remove waste products via structures known as lysosomes. When the gene is mutated, these unwanted substances build up inside cells. The researchers believe that if this also happens in neurons of human ALS patients, it could account for some of those patients’ symptoms.

“Our studies indicate what happens when the activities of such a gene are inhibited — defects in lysosomal function. Certain features of ALS are consistent with their being caused by defects in lysosomal function, such as inflammation,” says H. Robert Horvitz, the David H. Koch Professor of Biology at MIT, a member of the McGovern Institute for Brain Research and the Koch Institute for Integrative Cancer Research, and the senior author of the study.

Mutations in this gene, known as C9orf72, have also been linked to another neurodegenerative brain disorder known as frontotemporal dementia (FTD), which is estimated to affect about 60,000 people in the United States.

“ALS and FTD are now thought to be aspects of the same disease, with different presentations. There are genes that when mutated cause only ALS, and others that cause only FTD, but there are a number of other genes in which mutations can cause either ALS or FTD or a mixture of the two,” says Anna Corrionero, an MIT postdoc and the lead author of the paper, which appears in the May 3 issue of the journal Current Biology.

Genetic link

Scientists have identified dozens of genes linked to familial ALS, which occurs when two or more family members suffer from the disease. Doctors believe that genetics may also be a factor in nonfamilial cases of the disease, which are much more common, accounting for 90 percent of cases.

Of all ALS-linked mutations identified so far, the C9orf72 mutation is the most prevalent, and it is also found in about 25 percent of frontotemporal dementia patients. The MIT team set out to study the gene’s function in C. elegans, which has an equivalent gene known as alfa-1.

In studies of worms that lack alfa-1, the researchers discovered that defects became apparent early in embryonic development. C. elegans embryos have a yolk that helps to sustain them before they hatch, and in embryos missing alfa-1, the researchers found “blobs” of yolk floating in the fluid surrounding the embryos.

This led the researchers to discover that the gene mutation was affecting the lysosomal degradation of yolk once it is absorbed into the cells. Lysosomes, which also remove cellular waste products, are cell structures which carry enzymes that can break down many kinds of molecules.

When lysosomes degrade their contents — such as yolk — they are reformed into tubular structures that split, after which they are able to degrade other materials. The MIT team found that in cells with the alfa-1 mutation and impaired lysosomal degradation, lysosomes were unable to reform and could not be used again, disrupting the cell’s waste removal process.

“It seems that lysosomes do not reform as they should, and material accumulates in the cells,” Corrionero says.

For C. elegans embryos, that meant that they could not properly absorb the nutrients found in yolk, which made it harder for them to survive under starvation conditions. The embryos that did survive appeared to be normal, the researchers say.

Robert Brown, chair of the Department of Neurology at the University of Massachusetts Medical School, describes the study as a major contribution to scientists’ understanding of the normal function of the C9orf72 gene.

“They used the power of worm genetics to dissect very fully the stages of vesicle maturation at which this gene seems to play a major role,” says Brown, who was not involved in the study.

Neuronal effects

The researchers were able to partially reverse the effects of alfa-1 loss in the C. elegans embryos by expressing the human protein encoded by the C9orf72 gene. “This suggests that the worm and human proteins are performing the same molecular function,” Corrionero says.

If loss of C9orf72 affects lysosome function in human neurons, it could lead to a slow, gradual buildup of waste products in those cells. ALS usually affects cells of the motor cortex, which controls movement, and motor neurons in the spinal cord, while frontotemporal dementia affects the frontal areas of the brain’s cortex.

“If you cannot degrade things properly in cells that live for very long periods of time, like neurons, that might well affect the survival of the cells and lead to disease,” Corrionero says.

Many pharmaceutical companies are now researching drugs that would block the expression of the mutant C9orf72. The new study suggests certain possible side effects to watch for in studies of such drugs.

“If you generate drugs that decrease C9orf72 expression, you might cause problems in lysosomal homeostasis,” Corrionero says. “In developing any drug, you have to be careful to watch for possible side effects. Our observations suggest some things to look for in studying drugs that inhibit C9orf72 in ALS/FTD patients.”

The research was funded by an EMBO postdoctoral fellowship, an ALS Therapy Alliance grant, a gift from Rose and Douglas Barnard ’79 to the McGovern Institute, and a gift from the Halis Family Foundation to the MIT Aging Brain Initiative.

Viral tool traces long-term neuron activity

For the past decade, neuroscientists have been using a modified version of the rabies virus to label neurons and trace the connections between them. Although this technique has proven very useful, it has one major drawback: The virus is toxic to cells and can’t be used for studies longer than about two weeks.

Researchers at MIT and the Allen Institute for Brain Science have now developed a new version of this virus that stops replicating once it infects a cell, allowing it to deliver its genetic cargo without harming the cell. Using this technique, scientists should be able to study the infected neurons for several months, enabling longer-term studies of neuron functions and connections.

“With the first-generation vectors, the virus is replicating like crazy in the infected neurons, and that’s not good for them,” says Ian Wickersham, a principal research scientist at MIT’s McGovern Institute for Brain Research and the senior author of the new study. “With the second generation, infected cells look normal and act normal for at least four months — which was as long as we tracked them — and probably for the lifetime of the animal.”

Soumya Chatterjee of the Allen Institute is the lead author of the paper, which appears in the March 5 issue of Nature Neuroscience.

Viral tracing

Rabies viruses are well-suited for tracing neural connections because they have evolved to spread from neuron to neuron through junctions known as synapses. The viruses can also spread from the terminals of axons back to the cell body of the same neuron. Neuroscientists can engineer the viruses to carry genes for fluorescent proteins, which are useful for imaging, or for light-sensitive proteins that can be used to manipulate neuron activity.

In 2007, Wickersham demonstrated that a modified version of the rabies virus could be used to trace synapses between only directly connected neurons. Before that, researchers had been using the rabies virus for similar studies, but they were unable to keep it from spreading throughout the entire brain.

By deleting one of the virus’ five genes, which codes for a glycoprotein normally found on the surface of infected cells, Wickersham was able to create a version that can only spread to neurons in direct contact with the initially infected cell. This 2007 modification enabled scientists to perform “monosynaptic tracing,” a technique that allows them to identify connections between the infected neuron and any neuron that provides input to it.

This first generation of the modified rabies virus is also used for a related technique known as retrograde targeting, in which the virus can be injected into a cluster of axon terminals and then travel back to the cell bodies of those axons. This can help researchers discover the location of neurons that send impulses to the site of the virus injection.

Researchers at MIT have used retrograde targeting to identify populations of neurons of the basolateral amygdala that project to either the nucleus accumbens or the central medial amygdala. In that type of study, researchers can deliver optogenetic proteins that allow them to manipulate the activity of each population of cells. By selectively stimulating or shutting off these two separate cell populations, researchers can determine their functions.

Reduced toxicity

To create the second-generation version of this viral tool, Wickersham and his colleagues deleted the gene for the polymerase enzyme, which is necessary for transcribing viral genes. Without this gene, the virus becomes less harmful and infected cells can survive much longer. In the new study, the researchers found that neurons were still functioning normally for up to four months after infection.

“The second-generation virus enters a cell with its own few copies of the polymerase protein and is able to start transcribing its genes, including the transgene that we put into it. But then because it’s not able to make more copies of the polymerase, it doesn’t have this exponential takeover of the cell, and in practice it seems to be totally nontoxic,” Wickersham says.

The lack of polymerase also greatly reduces the expression of whichever gene the researchers engineer into the virus, so they need to employ a little extra genetic trickery to achieve their desired outcome. Instead of having the virus deliver a gene for a fluorescent or optogenetic protein, they engineer it to deliver a gene for an enzyme called Cre recombinase, which can delete target DNA sequences in the host cell’s genome.

This virus can then be used to study neurons in mice whose genomes have been engineered to include a gene that is turned on when the recombinase cuts out a small segment of DNA. Only a small amount of recombinase enzyme is needed to turn on the target gene, which could code for a fluorescent protein or another type of labeling molecule. The second-generation viruses can also work in regular mice if the researchers simultaneously inject another virus carrying a recombinase-activated gene for a fluorescent protein.

The new paper shows that the second-generation virus works well for retrograde labeling, not tracing synapses between cells, but the researchers have also now begun using it for monosynaptic tracing.

The research was funded by the National Institute of Mental Health, the National Institute on Aging, and the National Eye Institute.

Seeing the brain’s electrical activity

Neurons in the brain communicate via rapid electrical impulses that allow the brain to coordinate behavior, sensation, thoughts, and emotion. Scientists who want to study this electrical activity usually measure these signals with electrodes inserted into the brain, a task that is notoriously difficult and time-consuming.

MIT researchers have now come up with a completely different approach to measuring electrical activity in the brain, which they believe will prove much easier and more informative. They have developed a light-sensitive protein that can be embedded into neuron membranes, where it emits a fluorescent signal that indicates how much voltage a particular cell is experiencing. This could allow scientists to study how neurons behave, millisecond by millisecond, as the brain performs a particular function.

“If you put an electrode in the brain, it’s like trying to understand a phone conversation by hearing only one person talk,” says Edward Boyden, an associate professor of biological engineering and brain and cognitive sciences at MIT. “Now we can record the neural activity of many cells in a neural circuit and hear them as they talk to each other.”

Boyden, who is also a member of MIT’s Media Lab, McGovern Institute for Brain Research, and Koch Institute for Integrative Cancer Research, and an HHMI-Simons Faculty Scholar, is the senior author of the study, which appears in the Feb. 26 issue of Nature Chemical Biology. The paper’s lead authors are MIT postdocs Kiryl Piatkevich and Erica Jung.

Imaging voltage

For the past two decades, scientists have sought a way to monitor electrical activity in the brain through imaging instead of recording with electrodes. Finding fluorescent molecules that can be used for this kind of imaging has been difficult; not only do the proteins have to be very sensitive to changes in voltage, they must also respond quickly and be resistant to photobleaching (fading that can be caused by exposure to light).

Boyden and his colleagues came up with a new strategy for finding a molecule that would fulfill everything on this wish list: They built a robot that could screen millions of proteins, generated through a process called directed protein evolution, for the traits they wanted.

“You take a gene, then you make millions and millions of mutant genes, and finally you pick the ones that work the best,” Boyden says. “That’s the way that evolution works in nature, but now we’re doing it in the lab with robots so we can pick out the genes with the properties we want.”

The researchers made 1.5 million mutated versions of a light-sensitive protein called QuasAr2, which was previously engineered by Adam Cohen’s lab at Harvard University. (That work, in turn, was based on the molecule Arch, which the Boyden lab reported in 2010.) The researchers put each of those genes into mammalian cells (one mutant per cell), then grew the cells in lab dishes and used an automated microscope to take pictures of the cells. The robot was able to identify cells with proteins that met the criteria the researchers were looking for, the most important being the protein’s location within the cell and its brightness.

The research team then selected five of the best candidates and did another round of mutation, generating 8 million new candidates. The robot picked out the seven best of these, which the researchers then narrowed down to one top performer, which they called Archon1.

Mapping the brain

A key feature of Archon1 is that once the gene is delivered into a cell, the Archon1 protein embeds itself into the cell membrane, which is the best place to obtain an accurate measurement of a cell’s voltage.

Using this protein, the researchers were able to measure electrical activity in mouse brain tissue, as well as in brain cells of zebrafish larvae and the worm Caenorhabditis elegans. The latter two organisms are transparent, so it is easy to expose them to light and image the resulting fluorescence. When the cells are exposed to a certain wavelength of reddish-orange light, the protein sensor emits a longer wavelength of red light, and the brightness of the light corresponds to the voltage of that cell at a given moment in time.

The researchers also showed that Archon1 can be used in conjunction with light-sensitive proteins that are commonly used to silence or stimulate neuron activity — these are known as optogenetic proteins — as long as those proteins respond to colors other than red. In experiments with C. elegans, the researchers demonstrated that they could stimulate one neuron using blue light and then use Archon1 to measure the resulting effect in neurons that receive input from that cell.

Cohen, the Harvard professor who developed the predecessor to Archon1, says the new MIT protein brings scientists closer to the goal of imaging millisecond-timescale electrical activity in live brains.

“Traditionally, it has been excruciatingly labor-intensive to engineer fluorescent voltage indicators, because each mutant had to be cloned individually and then tested through a slow, manual patch-clamp electrophysiology measurement. The Boyden lab developed a very clever high-throughput screening approach to this problem,” says Cohen, who was not involved in this study. “Their new reporter looks really great in fish and worms and in brain slices. I’m eager to try it in my lab.”

The researchers are now working on using this technology to measure brain activity in mice as they perform various tasks, which Boyden believes should allow them to map neural circuits and discover how they produce specific behaviors.

“We will be able to watch a neural computation happen,” he says. “Over the next five years or so we’re going to try to solve some small brain circuits completely. Such results might take a step toward understanding what a thought or a feeling actually is.”

The research was funded by the HHMI-Simons Faculty Scholars Program, the IET Harvey Prize, the MIT Media Lab, the New York Stem Cell Foundation Robertson Award, the Open Philanthropy Project, John Doerr, the Human Frontier Science Program, the Department of Defense, the National Science Foundation, and the National Institutes of Health, including an NIH Director’s Pioneer Award.