Making and breaking habits

As part of our Ask the Brain series, science writer Shafaq Zia explores the question, “How are habits formed in the brain?”


Have you ever wondered why it is so hard to break free of bad habits like nail biting or obsessive social networking?

When we repeat an action over and over again, the behavioral pattern becomes automated in our brain, according to Jill R. Crittenden, molecular biologist and scientific advisor at McGovern Institute for Brain Research at MIT. For over a decade, Crittenden worked as a research scientist in the lab of Ann Graybiel, where one of the key questions scientists are working to answer is, how are habits formed?

Making habits

To understand how certain actions get wired in our neural pathways, this team of McGovern researchers experimented with rats, who were trained to run down a maze to receive a reward. If they turned left, they would get rich chocolate milk and for turning right, only sugar water. With this, the scientists wanted to see whether these animals could “learn to associate a cue with which direction they should turn in the maze in order to get the chocolate milk reward.”

Over time, the rats grew extremely habitual in their behavior; “they always turned the the correct direction and the places where their paws touched, in a fairly long maze, were exactly the same every time,” said Crittenden.

This isn’t a coincidence. When we’re first learning to do something, the frontal lobe and basal ganglia of the brain are highly active and doing a lot of calculations. These brain regions work together to associate behaviors with thoughts, emotions, and, most importantly, motor movements. But when we repeat an action over and over again, like the rats running down the maze, our brains become more efficient and fewer neurons are required to achieve the goal. This means, the more you do something, the easier it gets to carry it out because the behavior becomes literally etched in our brain as our motor movements.

But habits are complicated and they come in many different flavors, according to Crittenden. “I think we don’t have a great handle on how the differences [in our many habits] are separable neurobiologically, and so people argue a lot about how do you know that something’s a habit.”

The easiest way for scientists to test this in rodents is to see if the animal engages in the behavior even in the absence of reward. In this particular experiment, the researchers take away the reward, chocolate milk, to see whether the rats continue to run down the maze correctly. And to take it even a step further, they mix the chocolate milk with lithium chloride, which would upset the rat’s stomach. Despite all this, the rats continue to run down the maze and turn left towards the chocolate milk, as they had learnt to do over and over again.

Breaking habits

So does that mean once a habit is formed, it is impossible to shake it? Not quite. But it is tough. Rewards are a key building block to forming habits because our dopamine levels surge when we learn that an action is unexpectedly rewarded. For example, when the rats first learn to run down the maze, they’re motivated to receive the chocolate milk.

But things get complicated once the habit is formed. Researchers have found that this dopamine surge in response to reward ceases after a behavior becomes a habit. Instead the brain begins to release dopamine at the first cue or action that was previously learned to lead to the reward, so we are motivated to engage in the full behavioral sequence anyway, even if the reward isn’t there anymore.

This means we don’t have as much self-control as we think we do, which may also be the reason why it’s so hard to break the cycle of addiction. “People will report that they know this is bad for them. They don’t want it. And nevertheless, they select that action,” said Crittenden.

One common method to break the behavior, in this case, is called extinction. This is where psychologists try to weaken the association between the cue and the reward that led to habit formation in the first place. For example, if the rat no longer associates the cue to run down the maze with a reward, it will stop engaging in that behavior.

So the next time you beat yourself up over being unable to stick to a diet or sleep at a certain time, give yourself some grace and know that with consistency, a new, healthier habit can be born.

Aging Brain Initiative awards fund five new ideas to study, fight neurodegeneration

Neurodegenerative diseases are defined by an increasingly widespread and debilitating death of nervous system cells, but they also share other grim characteristics: Their cause is rarely discernible and they have all eluded cures. To spur fresh, promising approaches and to encourage new experts and expertise to join the field, MIT’s Aging Brain Initiative (ABI) this month awarded five seed grants after a competition among labs across the Institute.

Founded in 2015 by nine MIT faculty members, the ABI promotes research, symposia, and related activities to advance fundamental insights that can lead to clinical progress against neurodegenerative conditions, such as Alzheimer’s disease, with an age-related onset. With an emphasis on spurring research at an early stage before it is established enough to earn more traditional funding, the ABI derives support from philanthropic gifts.

“Solving the mysteries of how health declines in the aging brain and turning that knowledge into effective tools, treatments, and technologies is of the utmost urgency given the millions of people around the world who suffer with no meaningful treatment options,” says ABI director and co-founder Li-Huei Tsai, the Picower Professor of Neuroscience in The Picower Institute for Learning and Memory and the Department of Brain and Cognitive Sciences. “We were very pleased that many groups across MIT were eager to contribute their expertise and creativity to that goal. From here, five teams will be able to begin testing their innovative ideas and the impact they could have.”

To address the clinical challenge of accurately assessing cognitive decline during Alzheimer’s disease progression and healthy aging, a team led by Thomas Heldt, associate professor of electrical and biomedical engineering in the Department of Electrical Engineering and Computer Science (EECS) and the Institute for Medical Engineering and Science, proposes to use artificial intelligence tools to bring diagnostics based on eye movements during cognitive tasks to everyday consumer electronics such as smartphones and tablets. By moving these capabilities to common at-home platforms, the team, which also includes EECS Associate Professor Vivian Sze, hopes to increase monitoring beyond what can only be intermittently achieved with high-end specialized equipment and dedicated staffing in specialists’ offices. The team will pilot their technology in a small study at Boston Medical Center in collaboration with neurosurgeon James Holsapple.

Institute Professor Ann Graybiel’s lab in the Department of Brain and Cognitive Sciences (BCS) and the McGovern Institute for Brain Research will test the hypothesis that mutations on a specific gene may lead to the early emergence of Alzheimer’s disease (AD) pathology in the striatum. That’s a a brain region crucial for motivation and movement that is directly and severely impacted by other neurodegenerative disorders including Parkinson’s and Huntington’s diseases, but that has largely been unstudied in Alzheimer’s. By editing the mutations into normal and AD-modeling mice, Research Scientist Ayano Matsushima and Graybiel hope to determine whether and how pathology, such as the accumulation of amyloid proteins, may result. Determining that could provide new insight into the progression of disease and introduce a new biomarker in a region that virtually all other studies have overlooked.

Numerous recent studies have highlighted a potential role for immune inflammation in Alzheimer’s disease. A team led by Gloria Choi, the Mark Hyman Jr. Associate Professor in BCS and The Picower Institute for Learning and Memory, will track one potential source of such activity by determining whether the brain’s meninges, which envelop the brain, becomes a means for immune cells activated by gut bacteria to circulate near the brain, where they may release signaling molecules that promote Alzheimer’s pathology. Working in mice, Choi’s lab will test whether such activity is prone to increase in Alzheimer’s and whether it contributes to disease.

A collaboration led by Peter Dedon, the Singapore Professor in MIT’s Department of Biological Engineering, will explore whether Alzheimer’s pathology is driven by dysregulation of transfer RNAs (tRNAs) and the dozens of natural tRNA modifications in the epitranscriptome, which play a key role in the process by which proteins are assembled based on genetic instructions. With Benjamin Wolozin of Boston University, Sherif Rashad of Tohoku University in Japan, and Thomas Begley of the State University of New York at Albany, Dedon will assess how the tRNA pool and epitranscriptome may differ in Alzheimer’s model mice and whether genetic instructions mistranslated because of tRNA dysregulation play a role in Alzheimer’s disease.

With her seed grant, Ritu Raman, the d’Arbeloff Assistant Professor of Mechanical Engineering, is launching an investigation of possible disruption of intercellular messages in amyotrophic lateral sclerosis (ALS), a terminal condition in which motor neuron causes loss of muscle control. Equipped with a new tool to finely sample interstitial fluid within tissues, Raman’s team will be able to monitor and compare cell-cell signaling in models of the junction between nerve and muscle. These models will be engineered from stem cells derived from patients with ALS. By studying biochemical signaling at the junction the lab hopes to discover new targets that could be therapeutically modified.

Major support for the seed grants, which provide each lab with $100,000, came from generous gifts by David Emmes SM ’76; Kathleen SM ’77, PhD ’86 and Miguel Octavio; the Estate of Margaret A. Ridge-Pappis, wife of the late James Pappis ScD ’59; the Marc Haas Foundation; and the family of former MIT President Paul Gray ’54, SM ’55, ScD ‘60, with additional funding from many annual fund donors to the Aging Brain Initiative Fund.

Unexpected synergy

This story originally appeared in the Spring 2022 issue of BrainScan.


Recent results from cognitive neuroscientist Nancy Kanwisher’s lab have left her pondering the role of music in human evolution. “Music is this big mystery,” she says. “Every human society that’s been studied has music. No other animals have music in the way that humans do. And nobody knows why humans have music at all. This has been a puzzle for centuries.”

MIT neuroscientist and McGovern Investigator Nancy Kanwisher. Photo: Jussi Puikkonen/KNAW

Some biologists and anthropologists have reasoned that since there’s no clear evolutionary advantage for humans’ unique ability to create and respond to music, these abilities must have emerged when humans began to repurpose other brain functions. To appreciate song, they’ve proposed, we draw on parts of the brain dedicated to speech and language. It makes sense, Kanwisher says: music and language are both complex, uniquely human ways of communicating. “It’s very sensible to think that there might be common machinery,” she says. “But there isn’t.”

That conclusion is based on her team’s 2015 discovery of neurons in the human brain that respond only to music. They first became clued in to these music-sensitive cells when they asked volunteers to listen to a diverse panel of sounds inside an MRI scanner. Functional brain imaging picked up signals suggesting that some neurons were specialized to detect only music but the broad map of brain activity generated by an fMRI couldn’t pinpoint those cells.

Singing in the brain

Kanwisher’s team wanted to know more but neuroscientists who study the human brain can’t always probe its circuitry with the exactitude of their colleagues who study the brains of mice or rats. They can’t insert electrodes into human brains to monitor the neurons they’re interested in. Neurosurgeons, however, sometimes do — and thus, collaborating with neurosurgeons has created unique opportunities for Kanwisher and other McGovern investigators to learn about the human brain.

Kanwisher’s team collaborated with clinicians at Albany Medical Center to work with patients who are undergoing monitoring prior to surgical treatment for epilepsy. Before operating, a neurosurgeon must identify the spot in their patient’s brain that is triggering seizures. This means inserting electrodes into the brain to monitor specific areas over a few days or weeks. The electrodes they implant pinpoint activity far more precisely, both spatially and temporally, than an MRI. And with patients’ permission, researchers like Kanwisher can take advantage of the information they collect.

“The intracranial recording from human brains that’s possible from collaboration with neurosurgeons is extremely precious to us,” Kanwisher says. “All of the research is kind of opportunistic, on whatever the surgeons are doing for clinical reasons. But sometimes we get really lucky and the electrodes are right in an area where we have long-standing scientific questions that those data can answer.”

Song-selective neural population (yellow) in the “inflated” human brain. Image: Sam Norman-Haignere

The unexpected discovery of song-specific neurons, led by postdoctoral researcher Sam Norman-Haignere, who is now an assistant professor at the University of Rochester Medical Center, emerged from such a collaboration. The team worked with patients at Albany Medical Center whose presurgical monitoring encompassed the auditory-processing part of the brain that they were curious about. Sure enough, certain electrodes picked up activity only when patients were listening to music. The data indicated that in some of those locations, it didn’t matter what kind of music was playing: the cells fired in response to a range of sounds that included flute solos, heavy metal, and rap. But other locations became active exclusively in response to vocal music. “We did not have that hypothesis at all, Kanwisher says. “It reallytook our breath away,” she says.

When that discovery is considered along with findings from McGovern colleague Ev Fedorenko, who has shown that the brain’s language-processing regions do not respond to music, Kanwisher says it’s now clear that music and language are segregated in the human brain. The origins of our unique appreciation for music, however, remain a mystery.

Clinical advantage

Clinical collaborations are also important to researchers in Ann Graybiels lab, who rely largely on model organisms like mice and rats to investigate the fine details of neural circuits. Working with clinicians helps keep them focused on answering questions that matter to patients.

In studying how the brain makes decisions, the Graybiel lab has zeroed in on connections that are vital for making choices that carry both positive and negative consequences. This is the kind of decision-making that you might call on when considering whether to accept a job that pays more but will be more demanding than your current position, for example. In experiments with rats, mice, and monkeys, they’ve identified different neurons dedicated to triggering opposing actions “approach” or “avoid” in these complex decision-making tasks. They’ve also found evidence that both age and stress change how the brain deals with these kinds of decisions.

In work led by former Graybiel lab research scientist Ken-ichi Amemori, they have worked with psychiatrist Diego Pizzagalli at McLean Hospital to learn what happens in the human brain when people make these complex decisions.

By monitoring brain activity as people made decisions inside an MRI scanner, the team identified regions that lit up when people chose to “approach” or “avoid.” They also found parallel activity patterns in monkeys that performed the same task, supporting the relevance of animal studies to understanding this circuitry.

In people diagnosed with major depression, however, the brain responded to approach-avoidance conflict somewhat differently. Certain areas were not activated as strongly as they were in people without depression, regardless of whether subjects ultimately chose to “approach” or “avoid.” The team suspects that some of these differences might reflect a stronger tendency toward avoidance, in which potential rewards are less influential for decision-making, while an individual is experiencing major depression.

The brain activity associated with approach-avoidance conflict in humans appears to align with what Graybiel’s team has seen in mice, although clinical imaging cannot reveal nearly as much detail about the involved circuits. Graybiel says that gives her confidence that what they are learning in the lab, where they can manipulate and study neural circuits with precision, is important. “I think there’s no doubt that this is relevant to humans,” she says. “I want to get as far into the mechanisms as possible, because maybe we’ll hit something that’s therapeutically valuable, or maybe we will really get an intuition about how parts of the brain work. I think that will help people.”

Developing brain needs cannabinoid receptors after birth

Doctors warn that marijuana use during pregnancy may have harmful effects on the development of a fetus, in part because the cannabinoid receptors activated by the drug are known be critical for enabling a developing brain to wire up properly. Now, scientists at MIT’s McGovern Institute have learned that cannabinoid receptors’ critical role in brain development does not end at birth.

In today’s online issue of the journal eNeuro, scientists led by McGovern investigator Ann Graybiel report that mice need the cannabinoid receptor CB1R to establish connections within the brain’s dopamine system that take shape soon after birth. The finding raises concern that marijuana use by nursing moms, who pass the CB1R-activating compound THC to their infants when they breastfeed, might interfere with brain development by disrupting cannabinoid signaling.

“This is a real change to one of the truly important systems in the brain—a major controller of our dopamine,” Graybiel says. Dopamine exerts a powerful influence over our motivations and behavior, and changes to the dopamine system contribute to disorders from Parkinson’s disease to addiction. Thus, the researchers say, it is vital to understand whether postnatal drug exposure might put developing dopamine circuits at risk.

Brain bouquets

Cannabinoid receptors in the brain are important mediators of mood, memory, and pain. Graybiel’s lab became interested in CB1R due to their dysregulation in Huntington’s and Parkinson’s diseases, both of which impair the brain’s ability to control movement and other functions. While investigating the receptor’s distribution in the brain, they discovered that in the adult mice, CB1R is abundant within small compartments within the striatum called striosomes. The receptor was particularly concentrated within the neurons that connect striosomes to a dopamine-rich area of the brain called the substantia nigra, via structures that Graybiel’s team has dubbed striosome-dendron bouquets.

Striosome-dendron bouquets are easy to overlook within the densely connected network of the brain. But when the cells that make up the bouquets are labeled with a fluorescent protein, the bouquets become visible—and their appearance is striking, says Jill Crittenden, a research scientist in Graybiel’s lab.

Striosomal neurons form these bouquets by reaching into the substantia nigra, whose cells use dopamine to influence movement, motivation, learning, and habit formation. Clusters of dopamine-producing neurons form dendrites there that intertwine tightly with incoming axons from the striosomal neurons. The resulting structures, whose intimately associated cells resemble the bundled stems of a floral bouquet, establish so many connections that they give striosomal neurons potent control over dopamine signaling.

By tracking the bouquets’ emergence in newborn mice, Graybiel’s team found that they form in the first week after birth, a period during which striosomal neurons are ramping up production of CB1R. Mice genetically engineered to lack CB1R, however, can’t make these elaborate but orderly bouquets. Without the receptor, fibers from striosomes extend into the substantia nigra, but fail to form the tightly intertwined “bouquet stems” that facilitate extensive connections with their targets. This disorganized structure is apparent as soon as bouquets arise in the brains of young pups and persists into adulthood. “There aren’t those beautiful, strong fibers anymore,” Crittenden says. “This suggests that those very strong controllers over the dopamine system function abnormally when you interfere with cannabinoid signaling.”

The finding was a surprise. Without zeroing in on striosome-dendron bouquets, it would be easy to miss CB1R’s impact on the dopamine system, Crittenden says. Plus, she adds, prior studies of the receptor’s role in development largely focused on fetal development. The new findings reveal that the cannabinoid system continues to guide the formation of brain circuits after birth.

Graybiel notes that funds from generous donors, including the Broderick Fund for Phytocannabinoid Research at MIT, the Saks Kavanaugh Foundation, the Kristin R. Pressman and Jessica J. Pourian ‘13 Fund, Mr. Robert Buxton, and the William N. & Bernice E. Bumpus Foundation, enabled her team’s studies of CB1R’s role in shaping striosome-dendron bouquets.

Now that they have shown that CB1R is needed for postnatal brain development, it will be important to determine the consequences of disrupting cannabinoid signaling during this critical period—including whether passing THC to a nursing baby impacts the brain’s dopamine system.

Study finds neurons that encode the outcomes of actions

When we make complex decisions, we have to take many factors into account. Some choices have a high payoff but carry potential risks; others are lower risk but may have a lower reward associated with them.

A new study from MIT sheds light on the part of the brain that helps us make these types of decisions. The research team found a group of neurons in the brain’s striatum that encodes information about the potential outcomes of different decisions. These cells become particularly active when a behavior leads a different outcome than what was expected, which the researchers believe helps the brain adapt to changing circumstances.

“A lot of this brain activity deals with surprising outcomes, because if an outcome is expected, there’s really nothing to be learned. What we see is that there’s a strong encoding of both unexpected rewards and unexpected negative outcomes,” says Bernard Bloem, a former MIT postdoc and one of the lead authors of the new study.

Impairments in this kind of decision-making are a hallmark of many neuropsychiatric disorders, especially anxiety and depression. The new findings suggest that slight disturbances in the activity of these striatal neurons could swing the brain into making impulsive decisions or becoming paralyzed with indecision, the researchers say.

Rafiq Huda, a former MIT postdoc, is also a lead author of the paper, which appears in Nature Communications. Ann Graybiel, an MIT Institute Professor and member of MIT’s McGovern Institute for Brain Research, is the senior author of the study.

Learning from experience

The striatum, located deep within the brain, is known to play a key role in making decisions that require evaluating outcomes of a particular action. In this study, the researchers wanted to learn more about the neural basis of how the brain makes cost-benefit decisions, in which a behavior can have a mixture of positive and negative outcomes.

Striosomes (red) appear and then disappear as the view moves deeper into the striatum. Video courtesy of the researchers

To study this kind of decision-making, the researchers trained mice to spin a wheel to the left or the right. With each turn, they would receive a combination of reward (sugary water) and negative outcome (a small puff of air). As the mice performed the task, they learned to maximize the delivery of rewards and to minimize the delivery of air puffs. However, over hundreds of trials, the researchers frequently changed the probabilities of getting the reward or the puff of air, so the mice would need to adjust their behavior.

As the mice learned to make these adjustments, the researchers recorded the activity of neurons in the striatum. They had expected to find neuronal activity that reflects which actions are good and need to be repeated, or bad and that need to be avoided. While some neurons did this, the researchers also found, to their surprise, that many neurons encoded details about the relationship between the actions and both types of outcomes.

The researchers found that these neurons responded more strongly when a behavior resulted in an unexpected outcome, that is, when turning the wheel in one direction produced the opposite outcome as it had in previous trials. These “error signals” for reward and penalty seem to help the brain figure out that it’s time to change tactics.

Most of the neurons that encode these error signals are found in the striosomes — clusters of neurons located in the striatum. Previous work has shown that striosomes send information to many other parts of the brain, including dopamine-producing regions and regions involved in planning movement.

“The striosomes seem to mostly keep track of what the actual outcomes are,” Bloem says. “The decision whether to do an action or not, which essentially requires integrating multiple outcomes, probably happens somewhere downstream in the brain.”

Making judgments

The findings could be relevant not only to mice learning a task, but also to many decisions that people have to make every day as they weigh the risks and benefits of each choice. Eating a big bowl of ice cream after dinner leads to immediate gratification, but it might contribute to weight gain or poor health. Deciding to have carrots instead will make you feel healthier, but you’ll miss out on the enjoyment of the sweet treat.

“From a value perspective, these can be considered equally good,” Bloem says. “What we find is that the striatum also knows why these are good, and it knows what are the benefits and the cost of each. In a way, the activity there reflects much more about the potential outcome than just how likely you are to choose it.”

This type of complex decision-making is often impaired in people with a variety of neuropsychiatric disorders, including anxiety, depression, schizophrenia, obsessive-compulsive disorder, and posttraumatic stress disorder. Drug abuse can also lead to impaired judgment and impulsivity.

“You can imagine that if things are set up this way, it wouldn’t be all that difficult to get mixed up about what is good and what is bad, because there are some neurons that fire when an outcome is good and they also fire when the outcome is bad,” Graybiel says. “Our ability to make our movements or our thoughts in what we call a normal way depends on those distinctions, and if they get blurred, it’s real trouble.”

The new findings suggest that behavioral therapy targeting the stage at which information about potential outcomes is encoded in the brain may help people who suffer from those disorders, the researchers say.

The research was funded by the National Institutes of Health/National Institute of Mental Health, the Saks Kavanaugh Foundation, the William N. and Bernice E. Bumpus Foundation, the Simons Foundation, the Nancy Lurie Marks Family Foundation, the National Eye Institute, the National Institute of Neurological Disease and Stroke, the National Science Foundation, the Simons Foundation Autism Research Initiative, and JSPS KAKENHI.

A new approach to curbing cocaine use

Cocaine, opioids, and other drugs of abuse disrupt the brain’s reward system, often shifting users’ priorities to obtaining more drug above all else. For people battling addiction, this persistent craving is notoriously difficult to overcome—but new research from scientists at MIT’s McGovern Institute and collaborators points toward a therapeutic strategy that could help.

Researchers in MIT Institute Professor Ann Graybiel’s lab and collaborators at the University of Copenhagen and Vanderbilt University report in a January 25, 2022 online publication in the journal Addiction Biology that activating a signaling molecule in the brain known as muscarinic receptor 4 (M4) causes rodents to reduce cocaine self-administration and simultaneously choose a food treat over cocaine.

M4 receptors are found on the surface of neurons in the brain, where they alter signaling in response to the neurotransmitter acetylcholine. They are plentiful in the striatum, a brain region that Graybiel’s lab has shown is deeply involved in habit formation. They are of interest to addiction researchers because, along with a related receptor called M1, which is also abundant in the striatum, they often seem to act in opposition to the neurotransmitter dopamine.

Drugs of abuse stimulate the brain’s habit circuits by allowing dopamine to build up in the brain. With chronic use, that circuitry can become less sensitive to dopamine, so experiences that were once rewarding become less pleasurable and users are driven to seek higher doses of their drug. Attempts to directly block the dopamine system have not been found to be an effective way of treating addiction and can have unpleasant or dangerous side-effects, so researchers are seeking an alternative strategy to restore balance within the brain’s reward circuitry. “Another way to tweak that system is to activate these muscarinic receptors,” explains Jill Crittenden, a research scientist in the Graybiel lab.

New pathways to treatment

At the University of Copenhagen, neuroscientist Morgane Thomsen has found that activating the M1 receptor causes rodents to choose a food treat over cocaine. In the new work, she showed that a drug that selectively activates the M4 receptor has a similar effect.

When rats that have been trained to self-administer cocaine are given an M4-activating compound, they immediately reduce their drug use, actively choosing food instead. Thomsen found that this effect grew stronger over a seven-day course of treatment, with cocaine use declining day by day. When the M4-activating treatment was stopped, rats quickly resumed their prior cocaine-seeking behavior.

While Thomsen’s experiments have now shown that animals’ cocaine use can be reduced by activating either M1 or M4, it’s clear that the two muscarinic receptors don’t modulate cocaine use in the same way. M1 activation works on a different time scale, taking some time to kick in, but leaving some lasting effects even after the treatment has been discontinued.

Experiments with genetically modified mice developed in Graybiel’s lab confirm that the two receptors influence drug-seeking behavior via different molecular pathways. Previously, the team discovered that activating M1 has no effect on cocaine-seeking in mice that lack a signaling molecule called CalDAG-GEFI. M4 activation, however, reduces cocaine consumption regardless of whether CalDAG-GEFI is present. “The CalDAG-GEFI is completely essential for the M1 effect to happen, but doesn’t appear to play any role in the M4 effect,” Thomsen says. “So that really separates the pathways. In both the behavior and the neurobiology, it’s two different ways that we can modulate the cocaine effects.” The findings suggest that activating M4 could help people with substance abuse disorders overcome their addiction, and that such a strategy might be even more effective if combined with activation of the M1 receptor.

Graybiel’s lab first became interested in CalDAG-GEFI in the late 1990s, when they discovered that it was unusually abundant in the main compartment of the brain’s striatum. Their research revealed the protein to be important for controlling movement and even uncovered an essential role in blood clotting—but CalDAG-GEFI’s impacts on behavior remained elusive for a long time. Graybiel says it’s gratifying that this long-standing interest has now shed light on a potential therapeutic strategy for substance abuse disorder. Her lab will continue investigating the molecular pathways that underlie addiction as part of the McGovern Institute’s new addiction initiative.

The craving state

This story originally appeared in the Winter 2022 issue of BrainScan.


For people struggling with substance use disorders — and there are about 35 million of them worldwide — treatment options are limited. Even among those who seek help, relapse is common. In the United States, an epidemic of opioid addiction has been declared a public health emergency.

A 2019 survey found that 1.6 million people nationwide had an opioid use disorder, and the crisis has surged since the start of the COVID-19 pandemic. The Centers for Disease Control and Prevention estimates that more than 100,000 people died of drug overdose between April 2020 and April 2021 — nearly 30 percent more overdose deaths than occurred during the same period the previous year.

In the United States, an epidemic of opioid addiction has been declared a public health emergency.

A deeper understanding of what addiction does to the brain and body is urgently needed to pave the way to interventions that reliably release affected individuals from its grip. At the McGovern Institute, researchers are turning their attention to addiction’s driving force: the deep, recurring craving that makes people prioritize drug use over all other wants and needs.

McGovern Institute co-founder, Lore Harp McGovern.

“When you are in that state, then it seems nothing else matters,” says McGovern Investigator Fan Wang. “At that moment, you can discard everything: your relationship, your house, your job, everything. You only want the drug.”

With a new addiction initiative catalyzed by generous gifts from Institute co-founder Lore Harp McGovern and others, McGovern scientists with diverse expertise have come together to begin clarifying the neurobiology that underlies the craving state. They plan to dissect the neural transformations associated with craving at every level — from the drug-induced chemical changes that alter neuronal connections and activity to how these modifications impact signaling brain-wide. Ultimately, the McGovern team hopes not just to understand the craving state, but to find a way to relieve it — for good.

“If we can understand the craving state and correct it, or at least relieve a little bit of the pressure,” explains Wang, who will help lead the addiction initiative, “then maybe we can at least give people a chance to use their top-down control to not take the drug.”

The craving cycle

For individuals suffering from substance use disorders, craving fuels a cyclical pattern of escalating drug use. Following the euphoria induced by a drug like heroin or cocaine, depression sets in, accompanied by a drug craving motivated by the desire to relieve that suffering. And as addiction progresses, the peaks and valleys of this cycle dip lower: the pleasant feelings evoked by the drug become weaker, while the negative effects a person experiences in its absence worsen. The craving remains, and increasing use of the drug are required to relieve it.

By the time addiction sets in, the brain has been altered in ways that go beyond a drug’s immediate effects on neural signaling.

These insidious changes leave individuals susceptible to craving — and the vulnerable state endures. Long after the physical effects of withdrawal have subsided, people with substance use disorders can find their craving returns, triggered by exposure to a small amount of the drug, physical or social cues associated with previous drug use, or stress. So researchers will need to determine not only how different parts of the brain interact with one another during craving and how individual cells and the molecules within them are affected by the craving state — but also how things change as addiction develops and progresses.

Circuits, chemistry and connectivity

One clear starting point is the circuitry the brain uses to control motivation. Thanks in part to decades of research in the lab of McGovern Investigator Ann Graybiel, neuroscientists know a great deal about how these circuits learn which actions lead to pleasure and which lead to pain, and how they use that information to establish habits and evaluate the costs and benefits of complex decisions.

Graybiel’s work has shown that drugs of abuse strongly activate dopamine-responsive neurons in a part of the brain called the striatum, whose signals promote habit formation. By increasing the amount of dopamine that neurons release, these drugs motivate users to prioritize repeated drug use over other kinds of rewards, and to choose the drug in spite of pain or other negative effects. Her group continues to investigate the naturally occurring molecules that control these circuits, as well as how they are hijacked by drugs of abuse.

Distribution of opioid receptors targeted by morphine (shown in blue) in two regions in the dorsal striatum and nucleus accumbens of the mouse brain. Image: Ann Graybiel

In Fan Wang’s lab, work investigating the neural circuits that mediate the perception of physical pain has led her team to question the role of emotional pain in craving. As they investigated the source of pain sensations in the brain, they identified neurons in an emotion-regulating center called the central amygdala that appear to suppress physical pain in animals. Now, Wang wants to know whether it might be possible to modulate neurons involved in emotional pain to ameliorate the negative state that provokes drug craving.

These animal studies will be key to identifying the cellular and molecular changes that set the brain up for recurring cravings. And as McGovern scientists begin to investigate what happens in the brains of rodents that have been trained to self-administer addictive drugs like fentanyl or cocaine, they expect to encounter tremendous complexity.

McGovern Associate Investigator Polina Anikeeva, whose lab has pioneered new technologies that will help the team investigate the full spectrum of changes that underlie craving, says it will be important to consider impacts on the brain’s chemistry, firing patterns, and connectivity. To that end, multifunctional research probes developed in her lab will be critical to monitoring and manipulating neural circuits in animal models.

Imaging technology developed by investigator Ed Boyden will also enable nanoscale protein visualization brain-wide. An important goal will be to identify a neural signature of the craving state. With such a signal, researchers can begin to explore how to shut off that craving — possibly by directly modulating neural signaling.

Targeted treatments

“One of the reasons to study craving is because it’s a natural treatment point,” says McGovern Associate Investigator Alan Jasanoff. “And the dominant kind of approaches that people in our team think about are approaches that relate to neural circuits — to the specific connections between brain regions and how those could be changed.” The hope, he explains, is that it might be possible to identify a brain region whose activity is disrupted during the craving state, then use clinical brain stimulation methods to restore normal signaling — within that region, as well as in other connected parts of the brain.

To identify the right targets for such a treatment, it will be crucial to understand how the biology uncovered in laboratory animals reflects what’s happens in people with substance use disorders. Functional imaging in John Gabrieli’s lab can help bridge the gap between clinical and animal research by revealing patterns of brain activity associated with the craving state in both humans and rodents. A new technique developed in Jasanoff’s lab makes it possible to focus on the activity between specific regions of an animal’s brain. “By doing that, we hope to build up integrated models of how information passes around the brain in craving states, and of course also in control states where we’re not experiencing craving,” he explains.

In delving into the biology of the craving state, McGovern scientists are embarking on largely unexplored territory — and they do so with both optimism and urgency. “It’s hard to not appreciate just the size of the problem, and just how devastating addiction is,” says Anikeeva. “At this point, it just seems almost irresponsible to not work on it, especially when we do have the tools and we are interested in the general brain regions that are important for that problem. I would say that there’s almost a civic duty.”

Single gene linked to repetitive behaviors, drug addiction

Making and breaking habits is a prime function of the striatum, a large forebrain region that underlies the cerebral cortex. McGovern researchers have identified a particular gene that controls striatal function as well as repetitive behaviors that are linked to drug addiction vulnerability.

To identify genes involved specifically in striatal functions, MIT Institute Professor Ann Graybiel previously identified genes that are preferentially expressed in striatal neurons. One identified gene encodes CalDAG-GEFI (CDGI), a signaling molecule that effects changes inside of cells in response to extracellular signals that are received by receptors on the cell surface. In a paper to be published in the October issue of Neurobiology of Disease and now available online, Graybiel, along with former Research Scientist Jill Crittenden and collaborators James Surmeier and Shenyu Zhai at the Feinman School of Medicine at Northwestern University, show that CDGI is key for controlling behavioral responses to drugs of abuse and underlying neuronal plasticity (cellular changes induced by experience) in the striatum.

“This paper represents years of intensive research, which paid off in the end by identifying a specific cellular signaling cascade for controlling repetitive behaviors and neuronal plasticity,” says Graybiel, who is also an investigator at the McGovern Institute and a professor of brain and cognitive sciences at MIT.

McGovern Investigator Ann Graybiel (right) with former Research Scientist Jill Crittenden. Photo: Justin Knight

Surprise discovery

To understand the essential roles of CDGI, Crittenden first engineered “knockout” mice that lack the gene encoding CDGI. Then the Graybiel team began looking for abnormalities in the CDGI knockout mice that could be tied to the loss of CDGI’s function.

Initially, they noticed that the rodent ear-tag IDs often fell off in the knockout mice, an observation that ultimately led to the surprise discovery by the Graybiel team and others that CDGI is expressed in blood platelets and is responsible for a bleeding disorder in humans, dogs, and other animals. The CDGI knockout mice were otherwise healthy and seemed just like their “wildtype” brothers and sisters, which did not carry the gene mutation. To figure out the role of CDGI in the brain, the Graybiel team would have to scrutinize the mice more closely.

Challenging the striatum

Both the CDGI knockout and wildtype mice were given an extensive set of behavioral and neurological tests and the CDGI mice showed deficits in two tests designed to challenge the striatum.

In one test, mice must find their way through a maze by relying on egocentric (i.e. self-referential) cues, such as their turning right or turning left, and not competing allocentric (i.e. external) cues, such as going toward a bright poster on the wall. Egocentric cues are thought to be processed by the striatum whereas allocentric cues are thought to rely on the hippocampus.

In a second test of striatal function, mice learned various gait patterns to match different patterns of rungs on their running wheel, a task designed to test the mouse’s ability to learn and remember a motor sequence.

The CDGI mice learned both of these striatal tasks more slowly than their wildtype siblings, suggesting that the CDGI mice might perform normally in general tests of behavior because they are able to compensate for striatal deficits by using other brain regions such as the hippocampus to solve standard tasks.

The team then decided to give the mice a completely different type of test that relies on the striatum. Because the striatum is strongly activated by drugs of abuse, which elevate dopamine and drive motor habits, Crittenden and collaborator Morgane Thomsen (now at the University of Copenhagen) looked to see whether the CDGI knockout mice respond normally to amphetamine and cocaine.

Psychomotor stimulants like cocaine and amphetamine normally induce a mixture of hyperactive behaviors such as pacing and focused repetitive behaviors like skin-picking (also called stereotypy or punding in humans). The researchers found however, that the drug-induced behaviors in the CDGI knockout mice were less varied than the normal mice and consisted of abnormally prolonged stereotypy, as though the mice were unable to switch between behaviors. The researchers were able to map the abnormal behavior to CDGI function in the striatum by showing that the same vulnerability to drug-induced stereotypy was observed in mice that were engineered to delete CDGI in the striatum after birth (“conditional knockouts”), but to otherwise have normal CDGI throughout the body.

Controlling cravings

In addition to exhibiting prolonged, repetitive behaviors, the CDGI knockout mice had a vulnerability to self-administer drugs. Although previous research had shown that treatments that activate the M1 acetylcholine receptor can block cocaine self-administration, the team found that this therapy was ineffective in CDGI knockout mice. Knockouts continued to self-administer cocaine (suggesting increased craving for the drug) at the same rate before and after M1 receptor activation treatment, even though the treatment succeeded with their sibling control mice. The researchers concluded that CDGI is critically important for controlling repetitive behaviors and the ability to stop self-administration of addictive stimulants.

mouse brain images
Brain sections from control mice (left) and mice engineered for deletion of the CDGI gene after birth. The expression of CDGI in the striatum (arrows) grows stronger as mice grow from pups to adulthood in control mice, but is gradually lost in the CDGI engineered mice (“conditional knockouts”). Image courtesy of the researchers

To better understand how CDGI is linked to the M1 receptor at the cellular level, the team turned to slice physiologists, scientists who record the electrical activity of neurons in brain slices. Their recordings showed that striatal neurons from CDGI knockouts fail to undergo the normal, expected electrophysiological changes after receiving treatments that target the M1 receptor. In particular, the neurons of the striatum that function broadly to stop ongoing behaviors, did not integrate cellular signals properly and failed to undergo “long-term potentiation,” a type of neuronal plasticity thought to underlie learning.

The new findings suggest that excessive repetitive movements are controlled by M1 receptor signaling through CDGI in indirect pathway neurons of the striatum, a neuronal subtype that degenerates in Huntington’s disease and is affected by dopamine loss and l-DOPA replacement therapy in Parkinson’s disease.

“The M1 acetylcholine receptor is a target for therapeutic drug development in treating cognitive and behavioral problems in multiple disorders, but progress has been severely hampered by off-target side-effects related to the wide-spread expression of the M1 receptor,” Graybiel explains. “Our findings suggest that CDGI offers the possibility for forebrain-specific targeting of M1 receptor signaling cascades that are of interest for blocking pathologically repetitive and unwanted behaviors that are common to numerous brain disorders including Huntington’s disease, drug addiction, autism, and schizophrenia as well as drug-induced dyskinesias. We hope that this work can help therapeutic development for these major health problems.”

This work was funded by the James W. (1963) and Patricia T. Poitras Fund, the William N. & Bernice E. Bumpus Foundation, the Saks Kavanaugh Foundation, the Simons Foundation, and the National Institute of Health.

Gene changes linked to severe repetitive behaviors

Extreme repetitive behaviors such as hand-flapping, body-rocking, skin-picking and sniffing are common to a number of brain disorders including autism, schizophrenia, Huntington’s disease, and drug addiction. These behaviors, termed stereotypies, are also apparent in animal models of drug addiction and autism.

In a new study published in the European Journal of Neuroscience, researchers at the McGovern Institute have identified genes that are activated in the brain prior to the initiation of these severe repetitive behaviors.

“Our lab has found a small set of genes that are regulated in relation to the development of stereotypic behaviors in an animal model of drug addiction,” says MIT Institute Professor Ann Graybiel, who is the senior author of the paper. “We were surprised and interested to see that one of these genes is a susceptibility gene for schizophrenia. This finding might help to understand the biological basis of repetitive, stereotypic behaviors as seen in a range of neurologic and neuropsychiatric disorders, and in otherwise ‘typical’ people under stress.”

A shared molecular pathway

In work led by research scientist Jill Crittenden, researchers in the Graybiel lab exposed mice to amphetamine, a psychomotor stimulant that drives hyperactivity and confined stereotypies in humans and in laboratory animals and that is used to model symptoms of schizophrenia.

They found that stimulant exposure that drives the most prolonged repetitive behaviors lead to activation of genes regulated by Neuregulin 1, a signaling molecule that is important for a variety of cellular functions including neuronal development and plasticity. Neuregulin 1 gene mutations are risk factors for schizophrenia.

The new findings highlight a shared molecular and circuit pathway for stereotypies that are caused by drugs of abuse and in brain disorders, and have implications for why stimulant intoxication is a risk factor for the onset of schizophrenia.

“Experimental treatment with amphetamine has long been used in studies on rodents and other animals in tests to find better treatments for schizophrenia in humans, because there are some behavioral similarities across the two otherwise very different contexts,” explains Graybiel, who is also an investigator at the McGovern Institute and a professor of brain and cognitive sciences at MIT. “It was striking to find Neuregulin 1 — potentially one hint to shared mechanisms underlying some of these similarities.”

Drug exposure linked to repetitive behaviors

Although many studies have measured gene expression changes in animal models of drug addiction, this study is the first to evaluate genome-wide changes specifically associated with restricted repetitive behaviors.

Stereotypies are difficult to measure without labor-intensive, direct observation, because they consist of fine movements and idiosyncratic behaviors. In this study, the authors administered amphetamine (or saline control) to mice and then measured with photobeam-breaks how much they ran around. The researchers identified prolonged periods when the mice were not running around (e.g. were potentially engaged in confined stereotypies), and then they videotaped the mice during these periods to observationally score the severity of restricted repetitive behaviors (e.g. sniffing or licking stereotypies).

They gave amphetamine to each mouse once a day for 21 days and found that, on average, mice showed very little stereotypy on the first day of drug exposure but that, by the seventh day of exposure, all of the mice showed a prolonged period of stereotypy that gradually became shorter and shorter over the subsequent two weeks.

Graphical abstract
The authors compared gene expression changes in the brains of mice treated with amphetamine for one day, seven days or 21 days. By the twenty-first day of treatment, the stereotypy behaviors were less intense as was the gene upregulation – fewer genes were strongly activated, and more were repressed, relative to the other treatments.

“We were surprised to see the stereotypy diminishing after one week of treatment. We had actually planned a study based on our expectation that the repetitive behaviors would become more intense, but then we realized that this was an opportunity to look at what gene changes were unique to that day of high stereotypy,” says first author Jill Crittenden.

The authors compared gene expression changes in the brains of mice treated with amphetamine for one day, seven days or 21 days. They hypothesized that the gene changes associated specifically with high-stereotypy-associated seven days of drug treatment were the most likely to underlie extreme repetitive behaviors and could identify risk-factor genes for such symptoms in disease.

A shared anatomical pathway

Previous work from the Graybiel lab has shown that stereotypy is directly correlated to circumscribed gene activation in the striatum, a forebrain region that is key for habit formation. In animals with the most intense stereotypy, most of the striatum does not show gene activation, but immediate early gene induction remains high in clusters of cells called striosomes. Striosomes have recently been shown to have powerful control over cells that release dopamine, a neuromodulator that is severely disrupted in drug addiction and in schizophrenia. Strikingly, striosomes contain high levels of Neuregulin 1.

“Our new data suggest that the upregulation of Neuregulin-responsive genes in animals with severely repetitive behaviors reflects gene changes in the striosomal neurons that control the release of dopamine,” Crittenden explains. “Dopamine can directly impact whether an animal repeats an action or explores new actions, so our study highlights a potential role for a striosomal circuit in controlling action-selection in health and in neuropsychiatric disease.”

Patterns of behavior and gene expression

Striatal gene expression levels were measured by sequencing messenger RNAs (mRNAs) in dissected brain tissue. mRNAs are read out from “active” genes to instruct protein-synthesis machinery in how to make the protein that corresponds to the gene’s sequence. Proteins are the main constituents of a cell, thereby controlling each cell’s function. The number of times a particular mRNA sequence is found reflects the frequency at which the gene was being read out at the time that the cellular material was collected.

To identify genes that were read out into mRNA before the period of prolonged stereotypy, the researchers collected brain tissue 20 minutes after amphetamine injection, which is about 30 minutes before peak stereotypy. They then identified which genes had significantly different levels of corresponding mRNAs in drug-treated mice than in mice treated with saline.

A wide variety of genes showed modest mRNA increases after the first amphetamine exposure, which induced mild hyperactivity and a range of behaviors such as walking, sniffing and rearing in the mice.

By the seventh day of treatment, all of the mice were engaged for prolonged periods in one specific repetitive behavior, such as sniffing the wall. Likewise, there were fewer genes that were activated by the seventh day relative to the first treatment day, but they were strongly activated in all mice that received the stereotypy-inducing amphetamine treatment.

By the twenty-first day of treatment, the stereotypy behaviors were less intense as was the gene upregulation – fewer genes were strongly activated, and more were repressed, relative to the other treatments. “It seemed that the mice had developed tolerance to the drug, both in terms of their behavioral response and in terms of their gene activation response,” says Crittenden.

“Trying to seek patterns of gene regulation starting with behavior is correlative work, and we did not prove ‘causality’ in this first small study,” explains Graybiel. “But we hope that the striking parallels between the scope and selectivity of the mRNA and behavioral changes that we detected will help in further work on the tremendously challenging goal of treating addiction.”

This work was funded by the National Institute of Child Health and Human Development, the Saks-Kavanaugh Foundation, the Broderick Fund for Phytocannabinoid Research at MIT, the James and Pat Poitras Research Fund, The Simons Foundation and The Stanley Center for Psychiatric Research at the Broad Institute.

The pursuit of reward

View the interactive version of this story in our Spring 2021 issue of BrainScan.

The brain circuits that influence our decisions, cognitive functions, and ultimately, our actions are intimately connected with the circuits that give rise to our motivations. By exploring these relationships, scientists at McGovern are seeking knowledge that might suggest new strategies for changing our habits or treating motivation-disrupting conditions such as depression and addiction.

Risky decisions

MIT Institute Professor Ann Graybiel. Photo: Justin Knight

In Ann Graybiel’s lab, researchers have been examining how the brain makes choices that carry both positive and negative consequences — deciding to take on a higher-paying but more demanding job, for example. Psychologists call these dilemmas approach-avoidance conflicts, and resolving them not only requires weighing the good versus the bad, but also motivation to engage with the decision.

Emily Hueske, a research scientist in the Graybiel lab, explains that everyone has their own risk tolerance when it comes to such decisions, and certain psychiatric conditions, including depression and anxiety disorders, can shift the tipping point at which a person chooses to “approach” or “avoid.”

Studies have shown that neurons in the striatum (see image below), a region deep in the brain involved in both motivation and movement, activate as we grapple with these decisions. Graybiel traced this activity even further, to tiny compartments within the striatum called striosomes.

(She discovered striosomes many years ago and has been studying their function for decades.)

A motivational switch

In 2015, Graybiel’s team manipulated striosome signaling within genetically engineered mice and changed the way animals behave in approach-avoidance conflict situations. Taking cues from an assessment used to evaluate approach-avoidance behavior in patients, they presented mice with opportunities to obtain chocolate while experiencing unwelcome exposure in a brightly lit area.

Experimentally activating neurons in striosomes had a dramatic effect, causing mice to venture into brightly lit areas that they would normally avoid. With striosomal circuits switched on, “this animal all of a sudden is like a different creature,” Graybiel says.

Two years later, they found that chronic stress and other factors can also disrupt this signaling and change the choices animals make.

An image of the mouse striatum showing clusters of striosomes (red and yellow). Image: Graybiel lab

Age of ennui

This November, Alexander Friedman, who worked as a research scientist in the Graybiel lab, and Hueske reported in Cell that they found an age-related decline in motivation-modulated learning in mice and rats. Neurons within striosomes became more active than the cells that surround them as animals learned to assign positive and negative values to potential choices. And older mice were less engaged than their younger counterparts in the type of learning required to make these cost-benefit analyses. A similar lack of motivation was observed in a mouse model of Huntington’s disease, a neurodegenerative disorder that is often associated with mood
disturbances in patients.

“This coincides with our previous findings that striosomes are critically important for decisions that involve a conflict.”

“This coincides with our previous findings that striosomes are critically important for decisions that involve a conflict,” says Friedman, who is now an assistant professor at the University of Texas at El Paso.

Graybiel’s team is continuing to investigate these uniquely positioned compartments in the brain, expecting to shed light on the mechanisms that underlie both learning and motivation.

“There’s no learning without motivation, and in fact, motivation can be influenced by learning,” Hueske says. “The more you learn, the more excited you might be to engage in the task. So the two are intertwined.”

The aging brain

Researchers in John Gabrieli’s lab are also seeking to understand the circuits that link motivation to learning, and recently, his team reported that they, too, had found an age-related decline in motivation-modulated learning.

Studies in young adults have shown that memory improves when the brain circuits that process motivation and memory interact. Gabrieli and neurologist Maiya Geddes, who worked in Gabrieli’s lab as a postdoctoral fellow, wondered whether this holds true in older adults, particularly as memory declines.

To find out, the team recruited 40 people to participate in a brain imaging study. About half of the participants were between the ages of 18 and 30, while the others were between the ages of 49 and 84. While inside an fMRI scanner, each participant was asked to commit certain words to memory and told their success would determine how much money they received for participating in the experiment.

Diminished drive

MRI scan
Younger adults show greater activation in the reward-related regions of the brain during incentivized memory tasks compared to older adults. Image: Maiya Geddes

Not surprisingly, when participants were asked 24 hours later to recall the words, the younger group performed better overall than the older group. In young people, incentivized memory tasks triggered activity in parts of the brain involved in both memory and motivation. But in older adults, while these two parts of the brain could be activated independently, they did not seem to be communicating with one another.

“It seemed that the older adults, at least in terms of their brain response, did care about the kind of incentives that we were offering,” says Geddes, who is now an assistant professor at McGill University. “But for whatever reason, that wasn’t allowing them to benefit in terms of improved memory performance.”

Since the study indicates the brain still can anticipate potential rewards, Geddes is now exploring whether other sources of motivation, such as social rewards, might more effectively increase healthful decisions and behaviors in older adults.

Circuit control

Understanding how the brain generates and responds to motivation is not only important for improving learning strategies. Lifestyle choices such as exercise and social engagement can help people preserve cognitive function and improve their quality of life as they age, and Gabrieli says activating the right motivational circuits could help encourage people to implement healthy changes.

By pinpointing these motivational circuits in mice, Graybiel hopes that her research will lead to better treatment strategies for people struggling with motivational challenges, including Parkinson’s disease. Her team is now exploring whether striosomes serve as part of a value-sensitive switch, linking our intentions to dopamine-containing neurons in the midbrain that can modulate our actions.

“Perhaps this motivation is critical for the conflict resolution, and striosomes combine two worlds, dopaminergic motivation and cortical knowledge, resulting in motivation to learn,” Friedman says.

“Now we know that these challenges have a biological basis, and that there are neural circuits that can promote or reduce our feeling of motivational energy,” explains Graybiel. “This realization in itself is a major step toward learning how we can control these circuits both behaviorally and by highly selective therapeutic targeting.”