The Learning Brain

“There’s a slogan in education,” says McGovern Investigator John Gabrieli. “The first three years are learning to read, and after that you read to learn.”

For John Gabrieli, learning to read represents one of the most important milestones in a child’s life. Except, that is, when a child can’t. Children who cannot learn to read adequately by the first grade have a 90 percent chance of still reading poorly in the fourth grade, and 75 percent odds of struggling in high school. For the estimated 10 percent of schoolchildren with a reading disability, that struggle often comes with a host of other social and emotional challenges: anxiety, damaged self-esteem, increased risk for poverty and eventually, encounters with the criminal justice system.

Most reading interventions focus on classical dyslexia, which is essentially a coding problem—trouble moving letters into sound patterns in the brain. But other factors, such as inadequate vocabulary and lack of practice opportunities, hinder reading too. The diagnosis can be subjective, and for those who are diagnosed, the standard treatments help only some students. “Every teacher knows half to two-thirds have a good response, the other third don’t,” Gabrieli says. “It’s a mystery. And amazingly there’s been almost no progress on that.”

For the last two decades, Gabrieli has sought to unravel the neuroscience behind learning and reading disabilities and, ultimately, convert that understanding into new and better education
interventions—a sort of translational medicine for the classroom.

The Home Effect

In 2011, when Julia Leonard was a research assistant in Gabrieli’s lab, she planned to go into pediatrics. But she became drawn to the lab’s education projects and decided to join the lab as
a graduate student to learn more. By 2015, she helped coauthor a landmark study with postdoc Allyson Mackey, that sought neural markers for the academic “achievement gap,” which separates higher socioeconomic status (SES) children from their disadvantaged peers. It was the first study to make a connection between SES-linked differences in brain structure and educational markers. Specifically, they found children from wealthier backgrounds had thicker cortical brain regions, which correlated with better academic achievement.

“Being a doctor is a really awesome and powerful career,” she says. “But I was more curious about the research that could cause bigger changes in children’s lives.”

Leonard collaborated with Rachel Romeo, another graduate student in the Gabrieli lab who wanted to understand the powerful effect of SES on the developing brain. Romeo had a distinctive background in speech pathology and literacy, where she’d observed wealthier students progressing more quickly compared to their disadvantaged peers.

Their research is revealing a fascinating picture. In a 2017 study, Romeo compared how reading-disabled children from low and high SES backgrounds fared after an intensive summer reading intervention. Low SES children in the intervention improved most in their reading, and MRI scans revealed their brains also underwent greater structural changes in response to the intervention. Higher SES children did not appear to change much, either in skill or brain structure.

“In the few studies that have looked at SES effects on treatment outcomes,” Romeo says, “the research suggests that higher SES kids would show the most improvement. We were surprised to
find that this wasn’t true.” She suspects that the midsummer timing of the intervention may account for this. Lower SES kids’ performance often suffer most during a “summer slump,”
and would therefore have the greatest potential to improve from interventions at this time.

However, in another study this year, Leonard uncovered unique brain differences in lower-SES children. Only among lower-SES children was better reasoning ability associated with thicker
cortex in a key part of the brain. Same behavior, different neural signatures.

“So this becomes a really interesting basic science question,” Leonard says. “Does the brain support cognition the same way across everyone, or does it differ based on how you grow up?”

Not a One-Size-Fits-All

Critics of such “educational neuroscience” have highlighted the lack of useful interventions produced by this research. Gabrieli agrees that so far, little has emerged. “The painful thing is the slowness of this work. It’s mind-boggling,” Gabrieli admits. Every intervention requires all the usual human research requirements, plus coordinating with schools, parents, teachers, and so on. “It’s a huge process to do even the smallest intervention,” he explains. Partly because of that, the field is still relatively new.

But he disagrees with the idea that nothing will come from this research. Gabrieli’s lab previously identified neural markers in children who will go on to develop reading disabilities. These markers could even predict who would or would not respond to standard treatments that focus on phonetic letter-sound coding.

Romeo and Leonard’s work suggests that varied etiologies underlie reading disabilities, which may be the key. “For so long people have thought that reading disorders were just a unitary construct: kids are bad at reading, so let’s fix that with a one-size-fits-all treatment,” Romeo says.

Such findings may ultimately help resource-strapped schools target existing phonetic training rather than enrolling all struggling readers in the same program, to see some still fail.

Think Spaces

At the Oliver Hazard Perry School, a public K-8 school located on the South Boston waterfront, teachers like Colleen Labbe have begun to independently navigate similar problems as they try
to reach their own struggling students.

“A lot of times we look at assessments and put students in intervention groups like phonics,” Labbe says. “But it’s important to also ask what is happening for these students on their way to school and at home.”

For Labbe and Perry Principal Geoffrey Rose, brain science has proven transformative. They’ve embraced literature on neuroplasticity—the idea that brains can change if teachers find the right combination of intervention and circumstances, like the low-SES students who benefited in Romeo and Leonard’s study.

“A big myth is that the brain can’t grow and change, and if you can’t reach that student, you pass them off,” Labbe says.

The science has also been empowering to her students, validating their own powers of self-change. “I tell the kids, we’re going to build the goop!” she says, referring to the brain’s ability to make new connections.

“All kids can learn,” Rose agrees. “But the flip of that is, can all kids do school?” His job, he says, is to make sure they can.

The classrooms at Perry are a mix of students from different cultures and socioeconomic backgrounds, so he and Labbe have focused on helping teachers find ways to connect with these children and help them manage their stresses and thus be ready to learn. Teachers here are armed with “scaffolds”—digestible neuro- and cognitive science aids culled from Rose’s postdoctoral studies at Boston College’s Professional School Administrator Program for school leaders. These encourage teachers to be more aware of cultural differences and tendencies in themselves and their students, to better connect.

There are also “Think Spaces” tucked into classroom corners. “Take a deep breath and be calm,” read posters at these soothing stations, which are equipped with de-stressing tools, like squeezable balls, play-dough, and meditation-inspiring sparkle wands. It sounds trivial, yet studies have shown that poverty-linked stressors like food and home insecurity take a toll on emotion and memory-linked brain areas like the amygdala and hippocampus.

In fact, a new study by Clemens Bauer, a postdoc in Gabrieli’s lab, argues that mindfulness training can help calm amygdala hyperactivity, help lower self-perceived stress, and boost attention. His study was conducted with children enrolled in a Boston charter school.

Taking these combined approaches, Labbe says, she’s seen one of her students rise from struggling at the lowest levels of instruction, to thriving by year end. Labbe’s focus on understanding the girl’s stressors, her family environment, and what social and emotional support she really needed was key. “Now she knows she can do it,” Labbe says.

Rose and Labbe only wish they could better bridge the gap between educators like themselves and brain scientists like Gabrieli. To help forge these connections, Rose recently visited Gabrieli’s lab and looks forward to future collaborations. Brain research will provide critical insights into teaching strategy, he says, but the gap is still wide.

From Lab to Classroom

“I’m hugely impressed by principals and teachers who are passionately interested in understanding the brain,” Gabrieli says. Fortunately, new efforts are bridging educators and scientists.

This March, Gabrieli and the MIT Integrated Learning Initiative—MITili, which he also directs—announced a $30 million-dollar grant from the Chan Zuckerberg Initiative for a collaboration
between MIT, the Harvard Graduate School of Education, and Florida State University.

The grant aims to translate some of Gabrieli’s work into more classrooms. Specifically, he hopes to produce better diagnostics that can identify children at risk for dyslexia and other learning
disabilities before they even learn to read.

He hopes to also provide rudimentary diagnostics that identify the source of struggle, be it classic dyslexia, lack of home support, stress, or maybe a combination of factors. That in turn,
could guide treatment—standard phonetic care for some children, versus alternatives: social support akin to Labbe’s efforts, reading practice, or maybe just vocabulary-boosting conversation time with adults.

“We want to get every kid to be an adequate reader by the end of the third grade,” Gabrieli says. “That’s the ultimate goal for me: to help all children become learners.”

How music lessons can improve language skills

Many studies have shown that musical training can enhance language skills. However, it was unknown whether music lessons improve general cognitive ability, leading to better language proficiency, or if the effect of music is more specific to language processing.

A new study from MIT has found that piano lessons have a very specific effect on kindergartners’ ability to distinguish different pitches, which translates into an improvement in discriminating between spoken words. However, the piano lessons did not appear to confer any benefit for overall cognitive ability, as measured by IQ, attention span, and working memory.

“The children didn’t differ in the more broad cognitive measures, but they did show some improvements in word discrimination, particularly for consonants. The piano group showed the best improvement there,” says Robert Desimone, director of MIT’s McGovern Institute for Brain Research and the senior author of the paper.

The study, performed in Beijing, suggests that musical training is at least as beneficial in improving language skills, and possibly more beneficial, than offering children extra reading lessons. The school where the study was performed has continued to offer piano lessons to students, and the researchers hope their findings could encourage other schools to keep or enhance their music offerings.

Yun Nan, an associate professor at Beijing Normal University, is the lead author of the study, which appears in the Proceedings of the National Academy of Sciences the week of June 25.

Other authors include Li Liu, Hua Shu, and Qi Dong, all of Beijing Normal University; Eveline Geiser, a former MIT research scientist; Chen-Chen Gong, an MIT research associate; and John Gabrieli, the Grover M. Hermann Professor in Health Sciences and Technology, a professor of brain and cognitive sciences, and a member of MIT’s McGovern Institute for Brain Research.

Benefits of music

Previous studies have shown that on average, musicians perform better than nonmusicians on tasks such as reading comprehension, distinguishing speech from background noise, and rapid auditory processing. However, most of these studies have been done by asking people about their past musical training. The MIT researchers wanted to perform a more controlled study in which they could randomly assign children to receive music lessons or not, and then measure the effects.

They decided to perform the study at a school in Beijing, along with researchers from the IDG/McGovern Institute at Beijing Normal University, in part because education officials there were interested in studying the value of music education versus additional reading instruction.

“If children who received music training did as well or better than children who received additional academic instruction, that could a justification for why schools might want to continue to fund music,” Desimone says.

The 74 children participating in the study were divided into three groups: one that received 45-minute piano lessons three times a week; one that received extra reading instruction for the same period of time; and one that received neither intervention. All children were 4 or 5 years old and spoke Mandarin as their native language.

After six months, the researchers tested the children on their ability to discriminate words based on differences in vowels, consonants, or tone (many Mandarin words differ only in tone). Better word discrimination usually corresponds with better phonological awareness — the awareness of the sound structure of words, which is a key component of learning to read.

Children who had piano lessons showed a significant advantage over children in the extra reading group in discriminating between words that differ by one consonant. Children in both the piano group and extra reading group performed better than children who received neither intervention when it came to discriminating words based on vowel differences.

The researchers also used electroencephalography (EEG) to measure brain activity and found that children in the piano group had stronger responses than the other children when they listened to a series of tones of different pitch. This suggest that a greater sensitivity to pitch differences is what helped the children who took piano lessons to better distinguish different words, Desimone says.

“That’s a big thing for kids in learning language: being able to hear the differences between words,” he says. “They really did benefit from that.”

In tests of IQ, attention, and working memory, the researchers did not find any significant differences among the three groups of children, suggesting that the piano lessons did not confer any improvement on overall cognitive function.

Aniruddh Patel, a professor of psychology at Tufts University, says the findings also address the important question of whether purely instrumental musical training can enhance speech processing.

“This study answers the question in the affirmative, with an elegant design that directly compares the effect of music and language instruction on young children. The work specifically relates behavioral improvements in speech perception to the neural impact of musical training, which has both theoretical and real-world significance,” says Patel, who was not involved in the research.

Educational payoff

Desimone says he hopes the findings will help to convince education officials who are considering abandoning music classes in schools not to do so.

“There are positive benefits to piano education in young kids, and it looks like for recognizing differences between sounds including speech sounds, it’s better than extra reading. That means schools could invest in music and there will be generalization to speech sounds,” Desimone says. “It’s not worse than giving extra reading to the kids, which is probably what many schools are tempted to do — get rid of the arts education and just have more reading.”

Desimone now hopes to delve further into the neurological changes caused by music training. One way to do that is to perform EEG tests before and after a single intense music lesson to see how the brain’s activity has been altered.

The research was funded by the National Natural Science Foundation of China, the Beijing Municipal Science and Technology Commission, the Interdiscipline Research Funds of Beijing Normal University, and the Fundamental Research Funds for the Central Universities.

Yanny or Laurel?

“Yanny” or “Laurel?” Discussion around this auditory version of “The Dress” has divided the internet this week.

In this video, brain and cognitive science PhD students Dana Boebinger and Kevin Sitek, both members of the McGovern Institute, unpack the science — and settle the debate. The upshot? Our brain is faced with a myriad of sensory cues that it must process and make sense of simultaneously. Hearing is no exception, and two brains can sometimes “translate” soundwaves in very different ways.

The quest to understand intelligence

McGovern investigators study intelligence to answer a practical question for both educators and computer scientists. Can intelligence be improved?

A nine-year-old girl, a contestant on a game show, is standing on stage. On a screen in front of her, there appears a twelve-digit number followed by a six-digit number. Her challenge is to divide the two numbers as fast as possible.

The timer begins. She is racing against three other contestants, two from China and one, like her, from Japan. Whoever answers first wins, but only if the answer is correct.

The show, called “The Brain,” is wildly popular in China, and attracts players who display their memory and concentration skills much the way American athletes demonstrate their physical skills in shows like “American Ninja Warrior.” After a few seconds, the girl slams the timer and gives the correct answer, faster than most people could have entered the numbers on a calculator.

The camera pans to a team of expert judges, including McGovern Director Robert Desimone, who had arrived in Nanjing just a few hours earlier. Desimone shakes his head in disbelief. The task appears to make extraordinary demands on working memory and rapid processing, but the girl explains that she solves it by visualizing an abacus in her mind—something she has practiced intensively.

The show raises an age-old question: What is intelligence, exactly?

The study of intelligence has a long and sometimes contentious history, but recently, neuroscientists have begun to dissect intelligence to understand the neural roots of the distinct cognitive skills that contribute to it. One key question is whether these skills can be improved individually with training and, if so, whether those improvements translate into overall intelligence gains. This research has practical implications for multiple domains, from brain science to education to artificial intelligence.

“The problem of intelligence is one of the great problems in science,” says Tomaso Poggio, a McGovern investigator and an expert on machine learning. “If we make progress in understanding intelligence, and if that helps us make progress in making ourselves smarter or in making machines that help us think better, we can solve all other problems more easily.”

Brain training 101

Many studies have reported positive results from brain training, and there is now a thriving industry devoted to selling tools and games such as Lumosity and BrainHQ. Yet the science behind brain training to improve intelligence remains controversial.

A case in point is the “n-back” working memory task, in which subjects are presented with a rapid sequence of letters or visual patterns, and must report whether the current item matches the last, last-but-one, last-but-two, and so on. The field of brain training received a boost in 2008 when a widely discussed study claimed that a few weeks of training on a challenging version of this task could boost fluid intelligence, the ability to solve novel problems. The report generated excitement and optimism when it first appeared, but several subsequent attempts to reproduce the findings have been unsuccessful.

Among those unable to confirm the result was McGovern Investigator John Gabrieli, who recruited 60 young adults and trained them forty minutes a day for four weeks on an n-back task similar to that of the original study.

Six months later, Gabrieli re-evaluated the participants. “They got amazingly better at the difficult task they practiced. We have great imaging data showing changes in brain activation as they performed the task from before to after,” says Gabrieli. “And yet, that didn’t help them do better on any other cognitive abilities we could measure, and we measured a lot of things.”

The results don’t completely rule out the value of n-back training, says Gabrieli. It may be more effective in children, or in populations with a lower average intelligence than the individuals (mostly college students) who were recruited for Gabrieli’s study. The prospect that training might help disadvantaged individuals holds strong appeal. “If you could raise the cognitive abilities of a child with autism, or a child who is struggling in school, the data tells us that their life would be a step better,” says Gabrieli. “It’s something you would wish for people, especially for those where something is holding them back from the expression of their other abilities.”

Music for the brain

The concept of early intervention is now being tested by Desimone, who has teamed with Chinese colleagues at the recently-established IDG/McGovern Institute at Beijing Normal University to explore the effect of music training on the cognitive abilities of young children.

The researchers recruited 100 children at a neighborhood kindergarten in Beijing, and provided them with a semester-long intervention, randomly assigning children either to music training or (as a control) to additional reading instruction. Unlike the so-called “Mozart Effect,” a scientifically unsubstantiated claim that passive listening to music increases intelligence, the new study requires active learning through daily practice. Several smaller studies have reported cognitive benefits from music training, and Desimone finds the idea plausible given that musical cognition involves several mental functions that are also implicated in intelligence. The study is nearly complete, and results are expected to emerge within a few months. “We’re also collecting data on brain activity, so if we see improvements in the kids who had music training, we’ll also be able to ask about its neural basis,” says Desimone. The results may also have immediate practical implications, since the study design reflects decisions that schools must make in determining how children spend their time. “Many schools are deciding to cut their arts and music programs to make room for more instruction in academic core subjects, so our study is relevant to real questions schools are facing.”

Intelligent classrooms

In another school-based study, Gabrieli’s group recently raised questions about the benefits of “teaching to the test.” In this study, postdoc Amy Finn evaluated over 1300 eighth-graders in the Boston public schools, some enrolled at traditional schools and others at charter schools that emphasize standardized test score improvements. The researchers wanted to find out whether raised test scores were accompanied by improvement of cognitive skills that are linked to intelligence. (Charter school students are selected by lottery, meaning that any results are unlikely to reflect preexisting differences between the two groups of students.) As expected, charter school students showed larger improvements in test scores (relative to their scores from 4 years earlier). But when Finn and her colleagues measured key aspects of intelligence, such as working memory, processing speed, and reasoning, they found no difference between the students who enrolled in charter schools and those who did not. “You can look at these skills as the building blocks of cognition. They are useful for reasoning in a novel situation, an ability that is really important for learning,” says Finn. “It’s surprising that school practices that increase achievement don’t also increase these building blocks.”

Gabrieli remains optimistic that it will eventually be possible to design scientifically based interventions that can raise children’s abilities. Allyson Mackey, a postdoc in his lab, is studying the use of games to exercise the cognitive skills in a classroom setting. As a graduate student at University of California, Berkeley, Mackey had studied the effects of games such as “Chocolate Fix,” in which players match shapes and flavors, represented by color, to positions in a grid based on hints, such as, “the upper left position is strawberry.”

These games gave children practice at thinking through and solving novel problems, and at the end of Mackey’s study, the students—from second through fourth grades—showed improved measures of skills associated with intelligence. “Our results suggest that these cognitive skills are specifically malleable, although we don’t yet know what the active ingredients were in this program,” says Mackey, who speaks of the interventions as if they were drugs, with dosages, efficacies and potentially synergistic combinations to be explored. Mackey is now working to identify the most promising interventions—those that boost cognitive abilities, work well in the classroom, and are engaging for kids—to try in Boston charter schools. “It’s just the beginning of a three-year process to methodically test interventions to see if they work,” she says.

Brain training…for machines

While Desimone, Gabrieli and their colleagues look for ways to raise human intelligence, Poggio, who directs the MIT-based Center for Brains, Minds and Machines, is trying to endow computers with more human-like intelligence. Computers can already match human performance on some specific tasks such as chess. Programs such as Apple’s “Siri” can mimic human speech interpretation, not perfectly but well enough to be useful. Computer vision programs are approaching human performance at rapid object recognitions, and one such system, developed by one of Poggio’s former postdocs, is now being used to assist car drivers. “The last decade has been pretty magical for intelligent computer systems,” says Poggio.

Like children, these intelligent systems learn from past experience. But compared to humans or other animals, machines tend to be very slow learners. For example, the visual system for automobiles was trained by presenting it with millions of images—traffic light, pedestrian, and so on—that had already been labeled by humans. “You would never present so many examples to a child,” says Poggio. “One of our big challenges is to understand how to make algorithms in computers learn with many fewer examples, to make them learn more like children do.”

To accomplish this and other goals of machine intelligence, Poggio suspects that the work being done by Desimone, Gabrieli and others to understand the neural basis of intelligence will be critical. But he is not expecting any single breakthrough that will make everything fall into place. “A century ago,” he says, “scientists pondered the problem of life, as if ‘life’—what we now call biology—were just one problem. The science of intelligence is like biology. It’s a lot of problems, and a lot of breakthroughs will have to come before a machine appears that is as intelligent as we are.”

Back-and-forth exchanges boost children’s brain response to language

A landmark 1995 study found that children from higher-income families hear about 30 million more words during their first three years of life than children from lower-income families. This “30-million-word gap” correlates with significant differences in tests of vocabulary, language development, and reading comprehension.

MIT cognitive scientists have now found that conversation between an adult and a child appears to change the child’s brain, and that this back-and-forth conversation is actually more critical to language development than the word gap. In a study of children between the ages of 4 and 6, they found that differences in the number of “conversational turns” accounted for a large portion of the differences in brain physiology and language skills that they found among the children. This finding applied to children regardless of parental income or education.

The findings suggest that parents can have considerable influence over their children’s language and brain development by simply engaging them in conversation, the researchers say.

“The important thing is not just to talk to your child, but to talk with your child. It’s not just about dumping language into your child’s brain, but to actually carry on a conversation with them,” says Rachel Romeo, a graduate student at Harvard and MIT and the lead author of the paper, which appears in the Feb. 14 online edition of Psychological Science.

Using functional magnetic resonance imaging (fMRI), the researchers identified differences in the brain’s response to language that correlated with the number of conversational turns. In children who experienced more conversation, Broca’s area, a part of the brain involved in speech production and language processing, was much more active while they listened to stories. This brain activation then predicted children’s scores on language assessments, fully explaining the income-related differences in children’s language skills.

“The really novel thing about our paper is that it provides the first evidence that family conversation at home is associated with brain development in children. It’s almost magical how parental conversation appears to influence the biological growth of the brain,” says John Gabrieli, the Grover M. Hermann Professor in Health Sciences and Technology, a professor of brain and cognitive sciences, a member of MIT’s McGovern Institute for Brain Research, and the senior author of the study.

Beyond the word gap

Before this study, little was known about how the “word gap” might translate into differences in the brain. The MIT team set out to find these differences by comparing the brain scans of children from different socioeconomic backgrounds.

As part of the study, the researchers used a system called Language Environment Analysis (LENA) to record every word spoken or heard by each child. Parents who agreed to have their children participate in the study were told to have their children wear the recorder for two days, from the time they woke up until they went to bed.

The recordings were then analyzed by a computer program that yielded three measurements: the number of words spoken by the child, the number of words spoken to the child, and the number of times that the child and an adult took a “conversational turn” — a back-and-forth exchange initiated by either one.

The researchers found that the number of conversational turns correlated strongly with the children’s scores on standardized tests of language skill, including vocabulary, grammar, and verbal reasoning. The number of conversational turns also correlated with more activity in Broca’s area, when the children listened to stories while inside an fMRI scanner.

These correlations were much stronger than those between the number of words heard and language scores, and between the number of words heard and activity in Broca’s area.

This result aligns with other recent findings, Romeo says, “but there’s still a popular notion that there’s this 30-million-word gap, and we need to dump words into these kids — just talk to them all day long, or maybe sit them in front of a TV that will talk to them. However, the brain data show that it really seems to be this interactive dialogue that is more strongly related to neural processing.”

The researchers believe interactive conversation gives children more of an opportunity to practice their communication skills, including the ability to understand what another person is trying to say and to respond in an appropriate way.

While children from higher-income families were exposed to more language on average, children from lower-income families who experienced a high number of conversational turns had language skills and Broca’s area brain activity similar to those of children who came from higher-income families.

“In our analysis, the conversational turn-taking seems like the thing that makes a difference, regardless of socioeconomic status. Such turn-taking occurs more often in families from a higher socioeconomic status, but children coming from families with lesser income or parental education showed the same benefits from conversational turn-taking,” Gabrieli says.

Taking action

The researchers hope their findings will encourage parents to engage their young children in more conversation. Although this study was done in children age 4 to 6, this type of turn-taking can also be done with much younger children, by making sounds back and forth or making faces, the researchers say.

“One of the things we’re excited about is that it feels like a relatively actionable thing because it’s specific. That doesn’t mean it’s easy for less educated families, under greater economic stress, to have more conversation with their child. But at the same time, it’s a targeted, specific action, and there may be ways to promote or encourage that,” Gabrieli says.

Roberta Golinkoff, a professor of education at the University of Delaware School of Education, says the new study presents an important finding that adds to the evidence that it’s not just the number of words children hear that is significant for their language development.

“You can talk to a child until you’re blue in the face, but if you’re not engaging with the child and having a conversational duet about what the child is interested in, you’re not going to give the child the language processing skills that they need,” says Golinkoff, who was not involved in the study. “If you can get the child to participate, not just listen, that will allow the child to have a better language outcome.”

The MIT researchers now hope to study the effects of possible interventions that incorporate more conversation into young children’s lives. These could include technological assistance, such as computer programs that can converse or electronic reminders to parents to engage their children in conversation.

The research was funded by the Walton Family Foundation, the National Institute of Child Health and Human Development, a Harvard Mind Brain Behavior Grant, and a gift from David Pun Chan.

Socioeconomic background linked to reading improvement

About 20 percent of children in the United States have difficulty learning to read, and educators have devised a variety of interventions to try to help them. Not every program helps every student, however, in part because the origins of their struggles are not identical.

MIT neuroscientist John Gabrieli is trying to identify factors that may help to predict individual children’s responses to different types of reading interventions. As part of that effort, he recently found that children from lower-income families responded much better to a summer reading program than children from a higher socioeconomic background.

Using magnetic resonance imaging (MRI), the research team also found anatomical changes in the brains of children whose reading abilities improved — in particular, a thickening of the cortex in parts of the brain known to be involved in reading.

“If you just left these children [with reading difficulties] alone on the developmental path they’re on, they would have terrible troubles reading in school. We’re taking them on a neuroanatomical detour that seems to go with real gains in reading ability,” says Gabrieli, the Grover M. Hermann Professor in Health Sciences and Technology, a professor of brain and cognitive sciences, a member of MIT’s McGovern Institute for Brain Research, and the senior author of the study.

Rachel Romeo, a graduate student in the Harvard-MIT Program in Health Sciences and Technology, and Joanna Christodoulou, an assistant professor of communication sciences and disorders at the Massachusetts General Hospital Institute of Health Professions, are the lead authors of the paper, which appears in the June 7 issue of the journal Cerebral Cortex.

Predicting improvement

In hopes of identifying factors that influence children’s responses to reading interventions, the MIT team set up two summer schools based on a program known as Lindamood-Bell. The researchers recruited students from a wide income range, although socioeconomic status was not the original focus of their study.

The Lindamood-Bell program focuses on helping students develop the sensory and cognitive processing necessary for reading, such as thinking about words as units of sound, and translating printed letters into word meanings.

Children participating in the study, who ranged from 6 to 9 years old, spent four hours a day, five days a week in the program, for six weeks. Before and after the program, their brains were scanned with MRI and they were given some commonly used tests of reading proficiency.

In tests taken before the program started, children from higher and lower socioeconomic (SES) backgrounds fared equally poorly in most areas, with one exception. Children from higher SES backgrounds had higher vocabulary scores, which has also been seen in studies comparing nondyslexic readers from different SES backgrounds.

“There’s a strong trend in these studies that higher SES families tend to talk more with their kids and also use more complex and diverse language. That tends to be where the vocabulary correlation comes from,” Romeo says.

The researchers also found differences in brain anatomy before the reading program started. Children from higher socioeconomic backgrounds had thicker cortex in a part of the brain known as Broca’s area, which is necessary for language production and comprehension. The researchers also found that these differences could account for the differences in vocabulary levels between the two groups.

Based on a limited number of previous studies, the researchers hypothesized that the reading program would have more of an impact on the students from higher socioeconomic backgrounds. But in fact, they found the opposite. About half of the students improved their scores, while the other half worsened or stayed the same. When analyzing the data for possible explanations, family income level was the one factor that proved significant.

“Socioeconomic status just showed up as the piece that was most predictive of treatment response,” Romeo says.

The same children whose reading scores improved also displayed changes in their brain anatomy. Specifically, the researchers found that they had a thickening of the cortex in a part of the brain known as the temporal occipital region, which comprises a large network of structures involved in reading.

“Mix of causes”

The researchers believe that their results may have been different than previous studies of reading intervention in low SES students because their program was run during the summer, rather than during the school year.

“Summer is when socioeconomic status takes its biggest toll. Low SES kids typically have less academic content in their summer activities compared to high SES, and that results in a slump in their skills,” Romeo says. “This may have been particularly beneficial for them because it may have been out of the realm of their typical summer.”

The researchers also hypothesize that reading difficulties may arise in slightly different ways among children of different SES backgrounds.

“There could be a different mix of causes,” Gabrieli says. “Reading is a complicated skill, so there could be a number of different factors that would make you do better or do worse. It could be that those factors are a little bit different in children with more enriched or less enriched environments.”

The researchers are hoping to identify more precisely the factors related to socioeconomic status, other environmental factors, or genetic components that could predict which types of reading interventions will be successful for individual students.

“In medicine, people call it personalized medicine: this idea that some people will really benefit from one intervention and not so much from another,” Gabrieli says. “We’re interested in understanding the match between the student and the kind of educational support that would be helpful for that particular student.”

The research was funded by the Ellison Medical Foundation, the Halis Family Foundation, Lindamood-Bell Learning Processes, and the National Institutes of Health.

Rethinking mental illness treatment

McGovern researchers are finding neural markers that could help improve treatment for psychiatric patients.

Ten years ago, Jim and Pat Poitras committed $20M to the McGovern Institute to establish the Poitras Center for Affective Disorders Research. The Poitras family had been longtime supporters of MIT, and because they had seen mental illness in their own family, they decided to support an ambitious new program at the McGovern Institute, with the goal of understanding the fundamental biological basis of depression, bipolar disorder, schizophrenia and other major psychiatric disorders.

The gift came at an opportune time, as the field was entering a new phase of discovery, with rapid advances in psychiatric genomics and brain imaging, and with the emergence of new technologies for genome editing and for the development of animal models. Over the past ten years, the Poitras Center has supported work in each of these areas, including Feng Zhang’s work on CRISPR-based genome editing, and Guoping Feng’s work on animal models for autism, schizophrenia and other psychiatric disorders.

This reflects a long-term strategy, says Robert Desimone, director of the McGovern Institute who oversees the Poitras Center. “But we must not lose sight of the overall goal, which is to benefit human patients. Insights from animal models and genomic medicine have the potential to transform the treatments of the future, but we are also interested in the nearer term, and in what we can do right now.”

One area where technology can have a near-term impact is human brain imaging, and in collaboration with clinical researchers at McLean Hospital, Massachusetts General Hospital and other institutions, the Poitras Center has supported an ambitious program to bring human neuroimaging closer to the clinic.

Discovering psychiatry’s crystal ball

A fundamental problem in psychiatry is that there are no biological markers for diagnosing mental illness or for indicating how best to treat it. Treatment decisions are based entirely on symptoms, and doctors and their patients will typically try one treatment, then if it does not work, try another, and perhaps another. The success rates for the first treatments are often less than 50%, and finding what works for an individual patient often means a long and painful process of trial and error.

“Someday, a person will be able to go to a hospital, get a brain scan, charge it to their insurance, and know that it helped the doctor select the best treatment,” says Satra Ghosh.

McGovern research scientist Susan Whitfield-Gabrieli and her colleagues are hoping to change this picture, with the help of brain imaging. Their findings suggest that brain scans can hold valuable information for psychiatrists and their patients. “We need a paradigm shift in how we use imaging. It can be used for more than research,” says Whitfield-Gabrieli, who is a member of McGovern Investigator John Gabrieli’s lab. “It would be a really big boost to be able use it to personalize psychiatric medicine.”

One of Whitfield-Gabrieli’s goals is to find markers that can predict which treatments will work for which patients. Another is to find markers that can predict the likely risk of disease in the future, allowing doctors to intervene before symptoms first develop. All of these markers need further validation before they are ready for the clinic, but they have the potential to meet a dire need to improve treatment for psychiatric disease.

A brain at rest

For Whitfield-Gabrieli, who both collaborates with and is married to Gabrieli, that paradigm shift began when she started to study the resting brain using functional magnetic resonance imaging (fMRI). Most brain imaging studies require the subject to perform a mental task in the scanner, but these are time-consuming and often hard to replicate in a clinical setting.In contrast, resting state imaging requires no task. The subject simply lies in the scanner and lets the mind wander. The patterns of activity can reveal functional connections within the brain, and are reliably consistent from study to study.

Whitfield-Gabrieli thought resting state scanning had the potential to help patients because it is simple and easy to perform.

“Even a 5-minute scan can contain useful information that could help people,” says Satrajit Ghosh, a principal research scientist in the Gabrieli lab who works closely with Whitfield-Gabrieli.

Whitfield-Gabrieli and her clinical collaborator Larry Seidman at Harvard Medical School decided to study resting state activity in patients with schizophrenia. They found a pattern of activity strikingly different from that of typical brains. The patients showed unusually strong activity in a set of interconnected brain regions known as the default mode network, which is typically activated during introspection. It is normally suppressed when a person attends to the outside world, but schizophrenia patients failed to show this suppression.

“The patient isn’t able to toggle between internal processing and external processing the way a typical individual can,” says Whitfield-Gabrieli, whose work is supported by the Poitras Center for Affective Disorders Research.

Since then, the team has observed similar disturbances in the default network in other disorders, including depression, anxiety, bipolar disorder, and ADHD. “We knew we were onto something interesting,” says Whitfield-Gabrieli. “But we kept coming back to the question: how can brain imaging help patients?”

fMRI on patients

Many imaging studies aim to understand the biological basis of disease and ultimately to guide the development of new drugs or other treatments. But this is a long-term goal, and Whitfield-Gabrieli wanted to find ways that brain imaging could have a more immediate impact. So she and Ghosh decided to use fMRI to look at differences among individual patients, and to focus on differences in how they responded to treatment.

“It gave us something objective to measure,” explains Ghosh. “Someone goes through a treatment, and they either get better or they don’t.” The project also had appeal for Ghosh because it was an opportunity for him to use his expertise in machine learning and other computational tools to build systems-level models of the brain.

For the first study, the team decided to focus on social anxiety disorder (SAD), which is typically treated with either prescription drugs or cognitive behavioral therapy (CBT). Both are moderately effective, but many patients do not respond to the first treatment they try.

The team began with a small study to test whether scans performed before the onset of treatment could predict who would respond best to the treatment. Working with Stefan Hofmann, a clinical psychologist at Boston University, they scanned 38 SAD patients before they began a 12-week course of CBT. At the end of their treatment, the patients were evaluated for clinical improvement, and the researchers examined the scans for patterns of activity that correlated with the improvement. The results were very encouraging; it turned out that predictions based on scan data were 5-fold better than the existing methods based on severity of symptoms at the time of diagnosis.

The researchers then turned to another condition, ADHD, which presents a similar clinical challenge, in that commonly used drugs—such as Adderall or Ritalin—work well, but not for everyone. So the McGovern team began a collaboration with psychiatrist Joseph Biederman, Chief of Clinical and Research Programs in Pediatric Psychopharmacology and Adult ADHD
at Massachusetts General Hospital, on a similar study, looking for markers of treatment response.

The study is still ongoing, and it will be some time before results emerge, but the researchers are optimistic. “If we could predict who would respond to which treatment and avoid months of trial and error, it would be totally transformative for ADHD,” says Biederman.

Another goal is to predict in advance who is likely to develop a given disease in the future. The researchers have scanned children who have close relatives with schizophrenia or depression, and who are therefore at increased risk of developing these disorders themselves. Surprisingly, the children show patterns of resting state connectivity similar to those of patients.

“I was really intrigued by this,” says Whitfield-Gabrieli. “Even though these children are not sick, they have the same profile as adults who are.”

Whitfield-Gabrieli and Seidman are now expanding their study through a collaboration with clinical researchers at the Shanghai Mental Institute in China, who plan to image and then follow 225 people who are showing early risk signs for schizophrenia. They hope to find markers that predict who will develop the disease and who will not.

“While there are no drugs available to prevent schizophrenia, it may be possible to reduce the risk or severity of the disorder through CBT, or through interventions that reduce stress and improve sleep and well-being,” says Whitfield-Gabrieli. “One likely key to success is early identification of those at highest risk. If we could diagnose early, we could do early interventions
and potentially prevent disorders.”

From association to prediction

The search for predictive markers represents a departure from traditional psychiatric imaging studies, in which a group of patients is compared with a control group of healthy subjects. Studies of this type can reveal average differences between the groups, which may provide clues to the underlying biology of the disease. But they don’t provide information about individual patients, and so they have not been incorporated into clinical practice.

The difference is critical for clinicians, says Biederman. “I treat individuals, not groups. To bring predictive scans to the clinic, we need to be sure the individual scan is informative for the person you are treating.”

To develop these predictions, Whitfield-Gabrieli and Ghosh must first use sophisticated computational methods such as ‘deep learning’ to identify patterns in their data and to build models that relate the patterns to the clinical outcomes. They must then show that these models can generalize beyond the original study population—for example, that predictions based on patients from Boston can be applied to patients from Shanghai. The eventual goal is a model that can analyze a previously unseen brain scan from any individual, and predict with high confidence whether that person will (for example) develop schizophrenia or respond successfully to a particular therapy.

Achieving this will be challenging, because it will require scanning and following large numbers of subjects from diverse demographic groups—thousands of people, not just tens or hundreds
as in most clinical studies. Collaborations with large hospitals, such as the one in Shanghai, can help. Whitfield-Gabrieli has also received funding to collect imaging, clinical, and behavioral
data from over 200 adolescents with depression and anxiety, as part of the National Institutes of Health’s Human Connectome effort. These data, collected in collaboration with clinicians at
McLean Hospital, MGH and Boston University, will be available not only for the Gabrieli team, but for researchers anywhere to analyze. This is important, because no one team or center can
do it alone, says Ghosh. “Data must be collected by many and shared by all.”

The ultimate goal is to study as many patients as possible now so that the tools can help many more later. “Someday, a person will be able to go to a hospital, get a brain scan, charge it to their insurance, and know that it helped the doctor select the best treatment,” says Ghosh. “We’re still far away from that. But that is what we want to work towards.”

Distinctive brain pattern may underlie dyslexia

A distinctive neural signature found in the brains of people with dyslexia may explain why these individuals have difficulty learning to read, according to a new study from MIT neuroscientists.

The researchers discovered that in people with dyslexia, the brain has a diminished ability to acclimate to a repeated input — a trait known as neural adaptation. For example, when dyslexic students see the same word repeatedly, brain regions involved in reading do not show the same adaptation seen in typical readers.

This suggests that the brain’s plasticity, which underpins its ability to learn new things, is reduced, says John Gabrieli, the Grover M. Hermann Professor in Health Sciences and Technology, a professor of brain and cognitive sciences, and a member of MIT’s McGovern Institute for Brain Research.

“It’s a difference in the brain that’s not about reading per se, but it’s a difference in perceptual learning that’s pretty broad,” says Gabrieli, who is the study’s senior author. “This is a path by which a brain difference could influence learning to read, which involves so many demands on plasticity.”

Former MIT graduate student Tyler Perrachione, who is now an assistant professor at Boston University, is the lead author of the study, which appears in the Dec. 21 issue of Neuron.

Reduced plasticity

The MIT team used magnetic resonance imaging (MRI) to scan the brains of young adults with and without reading difficulties as they performed a variety of tasks. In the first experiment, the subjects listened to a series of words read by either four different speakers or a single speaker.

The MRI scans revealed distinctive patterns of activity in each group of subjects. In nondyslexic people, areas of the brain that are involved in language showed neural adaption after hearing words said by the same speaker, but not when different speakers said the words. However, the dyslexic subjects showed much less adaptation to hearing words said by a single speaker.

Neurons that respond to a particular sensory input usually react strongly at first, but their response becomes muted as the input continues. This neural adaptation reflects chemical changes in neurons that make it easier for them to respond to a familiar stimulus, Gabrieli says. This phenomenon, known as plasticity, is key to learning new skills.

“You learn something upon the initial presentation that makes you better able to do it the second time, and the ease is marked by reduced neural activity,” Gabrieli says. “Because you’ve done something before, it’s easier to do it again.”

The researchers then ran a series of experiments to test how broad this effect might be. They asked subjects to look at series of the same word or different words; pictures of the same object or different objects; and pictures of the same face or different faces. In each case, they found that in people with dyslexia, brain regions devoted to interpreting words, objects, and faces, respectively, did not show neural adaptation when the same stimuli were repeated multiple times.

“The brain location changed depending on the nature of the content that was being perceived, but the reduced adaptation was consistent across very different domains,” Gabrieli says.

He was surprised to see that this effect was so widespread, appearing even during tasks that have nothing to do with reading; people with dyslexia have no documented difficulties in recognizing objects or faces.

He hypothesizes that the impairment shows up primarily in reading because deciphering letters and mapping them to sounds is such a demanding cognitive task. “There are probably few tasks people undertake that require as much plasticity as reading,” Gabrieli says.

Early appearance

In their final experiment, the researchers tested first and second graders with and without reading difficulties, and they found the same disparity in neural adaptation.

“We got almost the identical reduction in plasticity, which suggests that this is occurring quite early in learning to read,” Gabrieli says. “It’s not a consequence of a different learning experience over the years in struggling to read.”

Gabrieli’s lab now plans to study younger children to see if these differences might be apparent even before children begin to learn to read. They also hope to use other types of brain measurements such as magnetoencephalography (MEG) to follow the time course of the neural adaptation more closely.

The research was funded by the Ellison Medical Foundation, the National Institutes of Health, and a National Science Foundation Graduate Research Fellowship.

Diagnosing depression before it starts

A new brain imaging study from MIT and Harvard Medical School may lead to a screen that could identify children at high risk of developing depression later in life.

In the study, the researchers found distinctive brain differences in children known to be at high risk because of family history of depression. The finding suggests that this type of scan could be used to identify children whose risk was previously unknown, allowing them to undergo treatment before developing depression, says John Gabrieli, the Grover M. Hermann Professor in Health Sciences and Technology and a professor of brain and cognitive sciences at MIT.

“We’d like to develop the tools to be able to identify people at true risk, independent of why they got there, with the ultimate goal of maybe intervening early and not waiting for depression to strike the person,” says Gabrieli, an author of the study, which appears in the journal Biological Psychiatry.

Early intervention is important because once a person suffers from an episode of depression, they become more likely to have another. “If you can avoid that first bout, maybe it would put the person on a different trajectory,” says Gabrieli, who is a member of MIT’s McGovern Institute for Brain Research.

The paper’s lead author is McGovern Institute postdoc Xiaoqian Chai, and the senior author is Susan Whitfield-Gabrieli, a research scientist at the McGovern Institute.

Distinctive patterns

The study also helps to answer a key question about the brain structures of depressed patients. Previous imaging studies have revealed two brain regions that often show abnormal activity in these patients: the subgenual anterior cingulate cortex (sgACC) and the amygdala. However, it was unclear if those differences caused depression or if the brain changed as the result of a depressive episode.

To address that issue, the researchers decided to scan brains of children who were not depressed, according to their scores on a commonly used diagnostic questionnaire, but had a parent who had suffered from the disorder. Such children are three times more likely to become depressed later in life, usually between the ages of 15 and 30.

Gabrieli and colleagues studied 27 high-risk children, ranging in age from eight to 14, and compared them with a group of 16 children with no known family history of depression.

Using functional magnetic resonance imaging (fMRI), the researchers measured synchronization of activity between different brain regions. Synchronization patterns that emerge when a person is not performing any particular task allow scientists to determine which regions naturally communicate with each other.

The researchers identified several distinctive patterns in the at-risk children. The strongest of these links was between the sgACC and the default mode network — a set of brain regions that is most active when the mind is unfocused. This abnormally high synchronization has also been seen in the brains of depressed adults.

The researchers also found hyperactive connections between the amygdala, which is important for processing emotion, and the inferior frontal gyrus, which is involved in language processing. Within areas of the frontal and parietal cortex, which are important for thinking and decision-making, they found lower than normal connectivity.

Cause and effect

These patterns are strikingly similar to those found in depressed adults, suggesting that these differences arise before depression occurs and may contribute to the development of the disorder, says Ian Gotlib, a professor of psychology at Stanford University.

“The findings are consistent with an explanation that this is contributing to the onset of the disease,” says Gotlib, who was not involved in the research. “The patterns are there before the depressive episode and are not due to the disorder.”

The MIT team is continuing to track the at-risk children and plans to investigate whether early treatment might prevent episodes of depression. They also hope to study how some children who are at high risk manage to avoid the disorder without treatment.

Other authors of the paper are Dina Hirshfeld-Becker, an associate professor of psychiatry at Harvard Medical School; Joseph Biederman, director of pediatric psychopharmacology at Massachusetts General Hospital (MGH); Mai Uchida, an assistant professor of psychiatry at Harvard Medical School; former MIT postdoc Oliver Doehrmann; MIT graduate student Julia Leonard; John Salvatore, a former McGovern technical assistant; MGH research assistants Tara Kenworthy and Elana Kagan; Harvard Medical School postdoc Ariel Brown; and former MIT technical assistant Carlo de los Angeles.

Study links brain anatomy, academic achievement, and family income

Many years of research have shown that for students from lower-income families, standardized test scores and other measures of academic success tend to lag behind those of wealthier students.

A new study led by researchers at MIT and Harvard University offers another dimension to this so-called “achievement gap”: After imaging the brains of high- and low-income students, they found that the higher-income students had thicker brain cortex in areas associated with visual perception and knowledge accumulation. Furthermore, these differences also correlated with one measure of academic achievement — performance on standardized tests.

“Just as you would expect, there’s a real cost to not living in a supportive environment. We can see it not only in test scores, in educational attainment, but within the brains of these children,” says MIT’s John Gabrieli, the Grover M. Hermann Professor in Health Sciences and Technology, professor of brain and cognitive sciences, and one of the study’s authors. “To me, it’s a call to action. You want to boost the opportunities for those for whom it doesn’t come easily in their environment.”

This study did not explore possible reasons for these differences in brain anatomy. However, previous studies have shown that lower-income students are more likely to suffer from stress in early childhood, have more limited access to educational resources, and receive less exposure to spoken language early in life. These factors have all been linked to lower academic achievement.

In recent years, the achievement gap in the United States between high- and low-income students has widened, even as gaps along lines of race and ethnicity have narrowed, says Martin West, an associate professor of education at the Harvard Graduate School of Education and an author of the new study.

“The gap in student achievement, as measured by test scores between low-income and high-income students, is a pervasive and longstanding phenomenon in American education, and indeed in education systems around the world,” he says. “There’s a lot of interest among educators and policymakers in trying to understand the sources of those achievement gaps, but even more interest in possible strategies to address them.”

Allyson Mackey, a postdoc at MIT’s McGovern Institute for Brain Research, is the lead author of the paper, which appears the journal Psychological Science. Other authors are postdoc Amy Finn; graduate student Julia Leonard; Drew Jacoby-Senghor, a postdoc at Columbia Business School; and Christopher Gabrieli, chair of the nonprofit Transforming Education.

Explaining the gap

The study included 58 students — 23 from lower-income families and 35 from higher-income families, all aged 12 or 13. Low-income students were defined as those who qualify for a free or reduced-price school lunch.

The researchers compared students’ scores on the Massachusetts Comprehensive Assessment System (MCAS) with brain scans of a region known as the cortex, which is key to functions such as thought, language, sensory perception, and motor command.

Using magnetic resonance imaging (MRI), they discovered differences in the thickness of parts of the cortex in the temporal and occipital lobes, whose primary roles are in vision and storing knowledge. Those differences correlated to differences in both test scores and family income. In fact, differences in cortical thickness in these brain regions could explain as much as 44 percent of the income achievement gap found in this study.

Previous studies have also shown brain anatomy differences associated with income, but did not link those differences to academic achievement.

“A number of labs have reported differences in children’s brain structures as a function of family income, but this is the first to relate that to variation in academic achievement,” says Kimberly Noble, an assistant professor of pediatrics at Columbia University who was not part of the research team.

In most other measures of brain anatomy, the researchers found no significant differences. The amount of white matter — the bundles of axons that connect different parts of the brain — did not differ, nor did the overall surface area of the brain cortex.

The researchers point out that the structural differences they did find are not necessarily permanent. “There’s so much strong evidence that brains are highly plastic,” says Gabrieli, who is also a member of the McGovern Institute. “Our findings don’t mean that further educational support, home support, all those things, couldn’t make big differences.”

In a follow-up study, the researchers hope to learn more about what types of educational programs might help to close the achievement gap, and if possible, investigate whether these interventions also influence brain anatomy.

“Over the past decade we’ve been able to identify a growing number of educational interventions that have managed to have notable impacts on students’ academic achievement as measured by standardized tests,” West says. “What we don’t know anything about is the extent to which those interventions — whether it be attending a very high-performing charter school, or being assigned to a particularly effective teacher, or being exposed to a high-quality curricular program — improves test scores by altering some of the differences in brain structure that we’ve documented, or whether they had those effects by other means.”

The research was funded by the Bill and Melinda Gates Foundation and the National Institutes of Health.