Why do I talk with my hands?

This is a very interesting question sent to us by Gabriel Castellanos (thank you!) Many of us gesture with our hands when we speak (and even when we do not) as a form of non-verbal communication. How hand gestures are coordinated with speech remains unclear. In part, it is difficult to monitor natural hand gestures in fMRI-based brain imaging studies as you have to stay still.

“Performing hand movements when stuck in the bore of a scanner is really tough beyond simple signing and keypresses,” explains McGovern Principal Research Scientist Satrajit Ghosh. “Thus ecological experiments of co-speech with motor gestures have not been carried out in the context of a magnetic resonance scanner, and therefore little is known about language and motor integration within this context.”

There have been studies that use proxies such as co-verbal pushing of buttons, and also studies using other imaging techniques, such as electroencephalography (EEG) and magnetoencephalography (MEG), to monitor brain activity during gesturing, but it would be difficult to precisely spatially localize the regions involved in natural co-speech hand gesticulation using such approaches. Another possible avenue for addressing this question would be to look at patients with conditions that might implicate particular brain regions in coordinating hand gestures, but such approaches have not really pinpointed a pathway for coordinating speech and hand movements.

That said, co-speech hand gesturing plays an important role in communication. “More generally co-speech hand gestures are seen as a mechanism for emphasis and disambiguation of the semantics of a sentence, in addition to prosody and facial queues,” says Ghosh. “In fact, one may consider the act of speaking as one large orchestral score involving vocal tract movement, respiration, voicing, facial expression, hand gestures, and even whole body postures acting as different instruments coordinated dynamically by the brain. Based on our current understanding of language production, co-speech or gestural events would likely be planned at a higher level than articulation and therefore would likely activate inferior frontal gyrus, SMA, and others.”

How this orchestra is coordinated and conducted thus remains to be unraveled, but certainly the question is one that gets to the heart of human social interactions.

Do you have a question for The Brain? Ask it here.

The Learning Brain

“There’s a slogan in education,” says McGovern Investigator John Gabrieli. “The first three years are learning to read, and after that you read to learn.”

For John Gabrieli, learning to read represents one of the most important milestones in a child’s life. Except, that is, when a child can’t. Children who cannot learn to read adequately by the first grade have a 90 percent chance of still reading poorly in the fourth grade, and 75 percent odds of struggling in high school. For the estimated 10 percent of schoolchildren with a reading disability, that struggle often comes with a host of other social and emotional challenges: anxiety, damaged self-esteem, increased risk for poverty and eventually, encounters with the criminal justice system.

Most reading interventions focus on classical dyslexia, which is essentially a coding problem—trouble moving letters into sound patterns in the brain. But other factors, such as inadequate vocabulary and lack of practice opportunities, hinder reading too. The diagnosis can be subjective, and for those who are diagnosed, the standard treatments help only some students. “Every teacher knows half to two-thirds have a good response, the other third don’t,” Gabrieli says. “It’s a mystery. And amazingly there’s been almost no progress on that.”

For the last two decades, Gabrieli has sought to unravel the neuroscience behind learning and reading disabilities and, ultimately, convert that understanding into new and better education
interventions—a sort of translational medicine for the classroom.

The Home Effect

In 2011, when Julia Leonard was a research assistant in Gabrieli’s lab, she planned to go into pediatrics. But she became drawn to the lab’s education projects and decided to join the lab as
a graduate student to learn more. By 2015, she helped coauthor a landmark study with postdoc Allyson Mackey, that sought neural markers for the academic “achievement gap,” which separates higher socioeconomic status (SES) children from their disadvantaged peers. It was the first study to make a connection between SES-linked differences in brain structure and educational markers. Specifically, they found children from wealthier backgrounds had thicker cortical brain regions, which correlated with better academic achievement.

“Being a doctor is a really awesome and powerful career,” she says. “But I was more curious about the research that could cause bigger changes in children’s lives.”

Leonard collaborated with Rachel Romeo, another graduate student in the Gabrieli lab who wanted to understand the powerful effect of SES on the developing brain. Romeo had a distinctive background in speech pathology and literacy, where she’d observed wealthier students progressing more quickly compared to their disadvantaged peers.

Their research is revealing a fascinating picture. In a 2017 study, Romeo compared how reading-disabled children from low and high SES backgrounds fared after an intensive summer reading intervention. Low SES children in the intervention improved most in their reading, and MRI scans revealed their brains also underwent greater structural changes in response to the intervention. Higher SES children did not appear to change much, either in skill or brain structure.

“In the few studies that have looked at SES effects on treatment outcomes,” Romeo says, “the research suggests that higher SES kids would show the most improvement. We were surprised to
find that this wasn’t true.” She suspects that the midsummer timing of the intervention may account for this. Lower SES kids’ performance often suffer most during a “summer slump,”
and would therefore have the greatest potential to improve from interventions at this time.

However, in another study this year, Leonard uncovered unique brain differences in lower-SES children. Only among lower-SES children was better reasoning ability associated with thicker
cortex in a key part of the brain. Same behavior, different neural signatures.

“So this becomes a really interesting basic science question,” Leonard says. “Does the brain support cognition the same way across everyone, or does it differ based on how you grow up?”

Not a One-Size-Fits-All

Critics of such “educational neuroscience” have highlighted the lack of useful interventions produced by this research. Gabrieli agrees that so far, little has emerged. “The painful thing is the slowness of this work. It’s mind-boggling,” Gabrieli admits. Every intervention requires all the usual human research requirements, plus coordinating with schools, parents, teachers, and so on. “It’s a huge process to do even the smallest intervention,” he explains. Partly because of that, the field is still relatively new.

But he disagrees with the idea that nothing will come from this research. Gabrieli’s lab previously identified neural markers in children who will go on to develop reading disabilities. These markers could even predict who would or would not respond to standard treatments that focus on phonetic letter-sound coding.

Romeo and Leonard’s work suggests that varied etiologies underlie reading disabilities, which may be the key. “For so long people have thought that reading disorders were just a unitary construct: kids are bad at reading, so let’s fix that with a one-size-fits-all treatment,” Romeo says.

Such findings may ultimately help resource-strapped schools target existing phonetic training rather than enrolling all struggling readers in the same program, to see some still fail.

Think Spaces

At the Oliver Hazard Perry School, a public K-8 school located on the South Boston waterfront, teachers like Colleen Labbe have begun to independently navigate similar problems as they try
to reach their own struggling students.

“A lot of times we look at assessments and put students in intervention groups like phonics,” Labbe says. “But it’s important to also ask what is happening for these students on their way to school and at home.”

For Labbe and Perry Principal Geoffrey Rose, brain science has proven transformative. They’ve embraced literature on neuroplasticity—the idea that brains can change if teachers find the right combination of intervention and circumstances, like the low-SES students who benefited in Romeo and Leonard’s study.

“A big myth is that the brain can’t grow and change, and if you can’t reach that student, you pass them off,” Labbe says.

The science has also been empowering to her students, validating their own powers of self-change. “I tell the kids, we’re going to build the goop!” she says, referring to the brain’s ability to make new connections.

“All kids can learn,” Rose agrees. “But the flip of that is, can all kids do school?” His job, he says, is to make sure they can.

The classrooms at Perry are a mix of students from different cultures and socioeconomic backgrounds, so he and Labbe have focused on helping teachers find ways to connect with these children and help them manage their stresses and thus be ready to learn. Teachers here are armed with “scaffolds”—digestible neuro- and cognitive science aids culled from Rose’s postdoctoral studies at Boston College’s Professional School Administrator Program for school leaders. These encourage teachers to be more aware of cultural differences and tendencies in themselves and their students, to better connect.

There are also “Think Spaces” tucked into classroom corners. “Take a deep breath and be calm,” read posters at these soothing stations, which are equipped with de-stressing tools, like squeezable balls, play-dough, and meditation-inspiring sparkle wands. It sounds trivial, yet studies have shown that poverty-linked stressors like food and home insecurity take a toll on emotion and memory-linked brain areas like the amygdala and hippocampus.

In fact, a new study by Clemens Bauer, a postdoc in Gabrieli’s lab, argues that mindfulness training can help calm amygdala hyperactivity, help lower self-perceived stress, and boost attention. His study was conducted with children enrolled in a Boston charter school.

Taking these combined approaches, Labbe says, she’s seen one of her students rise from struggling at the lowest levels of instruction, to thriving by year end. Labbe’s focus on understanding the girl’s stressors, her family environment, and what social and emotional support she really needed was key. “Now she knows she can do it,” Labbe says.

Rose and Labbe only wish they could better bridge the gap between educators like themselves and brain scientists like Gabrieli. To help forge these connections, Rose recently visited Gabrieli’s lab and looks forward to future collaborations. Brain research will provide critical insights into teaching strategy, he says, but the gap is still wide.

From Lab to Classroom

“I’m hugely impressed by principals and teachers who are passionately interested in understanding the brain,” Gabrieli says. Fortunately, new efforts are bridging educators and scientists.

This March, Gabrieli and the MIT Integrated Learning Initiative—MITili, which he also directs—announced a $30 million-dollar grant from the Chan Zuckerberg Initiative for a collaboration
between MIT, the Harvard Graduate School of Education, and Florida State University.

The grant aims to translate some of Gabrieli’s work into more classrooms. Specifically, he hopes to produce better diagnostics that can identify children at risk for dyslexia and other learning
disabilities before they even learn to read.

He hopes to also provide rudimentary diagnostics that identify the source of struggle, be it classic dyslexia, lack of home support, stress, or maybe a combination of factors. That in turn,
could guide treatment—standard phonetic care for some children, versus alternatives: social support akin to Labbe’s efforts, reading practice, or maybe just vocabulary-boosting conversation time with adults.

“We want to get every kid to be an adequate reader by the end of the third grade,” Gabrieli says. “That’s the ultimate goal for me: to help all children become learners.”

Yanny or Laurel?

“Yanny” or “Laurel?” Discussion around this auditory version of “The Dress” has divided the internet this week.

In this video, brain and cognitive science PhD students Dana Boebinger and Kevin Sitek, both members of the McGovern Institute, unpack the science — and settle the debate. The upshot? Our brain is faced with a myriad of sensory cues that it must process and make sense of simultaneously. Hearing is no exception, and two brains can sometimes “translate” soundwaves in very different ways.

Beyond the 30 Million Word Gap

At the McGovern Institute for Brain Research at MIT, John Gabrieli’s lab is studying how exposure to language may influence brain function in children.

The Beautiful Brain: The Drawings of Santiago Ramón y Cajal

Opening May 3, 2018

Santiago Ramón y Cajal made transformative discoveries of the anatomy of the brain and nervous system, work that led to his receiving a Nobel Prize in 1906. This founder of modern neuroscience was also an exceptional artist. His drawings of the brain were not only beautiful, but also astounding in their capacity to illustrate and understand the details of brain structure and function.

The Beautiful Brain: The Drawings of Santiago Ramón y Cajal at the MIT Museum is part of a traveling exhibit that will include approximately 80 of Cajal’s drawings, many rarely before seen in the U.S.

These historical works will be complimented by a contemporary exhibition of neuroscience visualizations that are leading to new insights, aided by technologies, many pioneered here at MIT’s McGovern Institute, that allow increasingly more detailed and precise understandings.

The exhibit is scheduled to open on May 3, 2018.


The Beautiful Brain: The Drawings of Santiago Ramón y Cajal was developed by the Frederick R. Weisman Art Museum, University of Minnesota with the CSIC’s Cajal Institute, Madrid, Spain.

wam_logos_4c-copy

 

 

 

 

 

Major exhibition support provided by:

ramondelpinocaixagreen

 

 

Sustaining exhibition support provided by:

cantabrialabs

 

 

 

 

 

Contributing exhibition support provided by:

spanishembassymibrpilm

 

bcslogostanleycenter

 

 

 

This exhibition is generously supported by the Associate Provost for the Arts, Philip Khoury. Additional support has been provided by the Council for the Arts at MIT.

CAMIT_Logo

 

 

 


 

Warm Wishes for 2018!

This year, we hope you enjoy “Postcards from the Brain” — an illustrative journey featuring brain regions studied by McGovern researchers.

For a closer look at these postcards, including a description of how our researchers are studying these particular regions of the brain, please visit our image gallery.

McGovern Institute 2017 Halloween Party

See below for a full gallery of images from our annual Halloween party.

How Biological Memory Really Works: Insights from the Man with the World’s Greatest Memory

 

Jim Karol exhibited no particular talent for memorizing anything early in his life. Far from being a savant, his grades in school were actually pretty bad and, after failing to graduate from college, he spent his 20’s working in a factory. He only started playing around with mnemonic techniques at the age of 49, merely as a means to amuse himself while he worked out on the treadmill. Then, in one of the most remarkable cognitive transformations in human history, he turned himself into the man with the world’s greatest memory. Whatever vast body of information is put before him — the US zip codes, the day of the week of every date in history, the first few thousand digits of pi, etc. — he voraciously commits to memory using his own inimitable mnemonic techniques. Moreover, unlike most other professional memorists, Jim has mastered the mental skill of permanently storing that information in long-term memory, as opposed to only short or medium-term memory. How does he do it?

To be sure, Jim has taken standard menmonic techniques to the next level. That said, it has been well-documented for over 2500 years that mnemonic techiques — such as the “Method of Loci” or the “Memory Palace” — dramatically enhance the memory capacity of anyone who uses them regularly. But is there any point to improving one’s memory in the age of the computer? Tony Dottino, the founder/executive director of the USA Memory Championship and a world reknown memory coach, will describe his experiences of teaching these techniques to all age groups.

Finally, does any of this have anything to do with the neuroscience of memory? McGovern Institute neuroscientist Robert Ajemian argues that it does and that one of the great intellectual misunderstandings in scientific history is that modern-day neuroscientists largely base their conceptualization of human memory on the computer metaphor. For this reason, neuroscientists usually talk of read/write operations, traces, engrams, storage/retrieval distinctions, etc. Ajemian argues that all of this is wrong for the brain, a highly distributed system which processes in parallel. The correct conceptualization of human memory is that of content-addressable memory implemented by attractor networks, and the success of mnemonic techniques, though largely ignored in current theories of memory, constitutes the ultimate proof. Ajemian will briefly outline these arguments.

Tan-Yang Center for Autism Research: Opening Remarks

June 12, 2017
Tan-Yang Center for Autism Research: Opening Remarks
Bob Desimone, Director of the McGovern Institute for Brain Research at MIT
Bob Millard, Chair of MIT Corporation
Lore Harp McGovern, Co-founder of the McGovern Institute for Brain Research at MIT
Hock E. Tan and K. Lisa Yang, Founders of the Tan-Yang Center for Autism Research

On June 12, 2017, the McGovern Institute hosted the launch celebration for the Hock E. Tan and K. Lisa Yang Center for Autism Research. The center is made possible by a kick-off commitment of $20 million, made by Lisa Yang and MIT alumnus Hock Tan ’75.

The Tan-Yang Center for Autism Research will support research on the genetic, biological and neural bases of autism spectrum disorders, a developmental disability estimated to affect 1 in 68 individuals in the United States. Tan and Yang hope their initial investment will stimulate additional support and help foster collaborative research efforts to erase the devastating effects of this disorder on individuals, their families and the broader autism community.

Feng Zhang Wins the 2017 Blavatnik National Award for Young Scientists

The Blavatnik Family Foundation and the New York Academy of Sciences today announced the 2017 Laureates of the Blavatnik National Awards for Young Scientists. Starting with a pool of 308 nominees – the most promising scientific researchers aged 42 years and younger nominated by America’s top academic and research institutions – a distinguished jury first narrowed their selections to 30 Finalists, and then to three outstanding Laureates, one each from the disciplines of Life Sciences, Chemistry and Physical Sciences & Engineering. Each Laureate will receive $250,000 – the largest unrestricted award of its kind for early career scientists and engineers. This year’s Blavatnik National Laureates are:

Feng Zhang, PhD, Core Member, Broad Institute of MIT and Harvard; Associate Professor of Brain and Cognitive Sciences and Biomedical Engineering, MIT; Robertson Investigator, New York Stem Cell Foundation; James and Patricia Poitras ’63 Professor in Neuroscience, McGovern Institute for Brain Research at MIT. Dr. Zhang is being recognized for his role in developing the CRISPR-Cas9 gene-editing system and demonstrating pioneering uses in mammalian cells, and for his development of revolutionary technologies in neuroscience.

Melanie S. Sanford, PhD, Moses Gomberg Distinguished University Professor and Arthur F. Thurnau Professor of Chemistry, University of Michigan. Dr. Sanford is being celebrated for developing simpler chemical approaches – with less environmental impact – to the synthesis of molecules that have applications ranging from carbon dioxide recycling to drug discovery.

Yi Cui, PhD, Professor of Materials Science and Engineering, Photon Science and Chemistry, Stanford University and SLAC National Accelerator Laboratory. Dr. Cui is being honored for his technological innovations in the use of nanomaterials for environmental protection and the development of sustainable energy sources.

“The work of these three brilliant Laureates demonstrates the exceptional science being performed at America’s premiere research institutions and the discoveries that will make the lives of future generations immeasurably better,” said Len Blavatnik, Founder and Chairman of Access Industries, head of the Blavatnik Family Foundation, and an Academy Board Governor.

“Each of our 2017 National Laureates is shifting paradigms in areas that profoundly affect the way we tackle the health of our population and our planet — improved ways to store energy, “greener” drug and fuel production, and novel tools to correct disease-causing genetic mutations,” said Ellis Rubinstein, President and CEO of the Academy and Chair of the Awards’ Scientific Advisory Council. “Recognition programs like the Blavatnik Awards provide incentives and resources for rising stars, and help them to continue their important work. We look forward to learning where their innovations and future discoveries will take us in the years ahead.”

The annual Blavatnik Awards, established in 2007 by the Blavatnik Family Foundation and administered by the New York Academy of Sciences, recognize exceptional young researchers who will drive the next generation of innovation by answering today’s most complex and intriguing scientific questions.