Welcoming the first McGovern Fellows

We are delighted to kick off the new year by welcoming Omar Abuddayeh and Jonathan Gootenberg as the first members of our new McGovern Institute Fellows Program. The fellows program is a recently launched initiative that supports highly-talented and selected postdocs that are ready to initiate their own research program.

As McGovern Fellows, the pair will be given space, time, and support to help them follow scientific research directions of their own choosing. This provides an alternative to the traditional postdoctoral research route.

Abudayyeh and Gootenberg both defended their thesis in the fall of 2018, and graduated from the lab of Feng Zhang, who is the James and Patricia Poitras Professor of Neuroscience at MIT, a McGovern investigator and core member of the Broad Institute. During their time in the Zhang lab, Abudayyeh and Gootenberg worked on projects that sought and found new tools based on enzymes mined from bacterial CRISPR systems. Cas9 is the original programmable single-effector DNA-editing enzyme, and the new McGovern Fellows worked on teams that actively looked for CRISPR enzymes with properties distinct from and complementary to Cas9. In the course of their thesis work, they helped to identify RNA-guided RNA editing factors such as the Cas13 family. This work led to the development of the REPAIR system, which is capable of editing RNA, thus providing a CRISPR-based therapeutic avenue that is not based on permanent, heritable changes to the genome. In addition, they worked on a Cas13-based diagnostic system called SHERLOCK that can detect specific nucleic acid sequences. SHERLOCK is able to detect the presence of infectious agents such as Zika virus in an easily-deployable lateral flow format, similar to a pregnancy test.

We are excited to see the directions that the new McGovern Fellows take as they now arrive at the institute, and will keep you posted on scientific findings as they emerge from their labs.

 

Future Forward: Leadership Lessons from Patrick McGovern

More than half a century ago in a small gray house in Newton, Massachusetts, Patrick McGovern ’59 started what would eventually become the global publishing, research and technology investment powerhouse IDG. In the year 2000, he became a world-renowned philanthropist with his establishment of MIT’s McGovern Institute for Brain Research, one of the top neuroscience institutes in the world.

In the new book Future Forward: Leadership Lessons from Patrick McGovern, the Visionary Who Circled the Globe and Built a Technology Media Empire, author Glenn Rifkin details the legendary principles that McGovern relied on to drive the success of both IDG and the McGovern Institute: forge a clear mission that brings together everyone at all levels in an organization; empower employees to make decisions and propose new ideas; and create invigorating, positive atmospheres that bring out the best in people.

These lessons and more are detailed in Future Forward, available now at bookstores everywhere.

School of Science welcomes 10 professors

The MIT School of Science recently welcomed 10 new professors, including Ila Fiete in the departments of Brain and Cognitive Sciences, Chemistry, Biology, Physics, Mathematics, and Earth, Atmospheric and Planetary Sciences.

Ila Fiete uses computational and theoretical tools to better understand the dynamical mechanisms and coding strategies that underlie computation in the brain, with a focus on elucidating how plasticity and development shape networks to perform computation and why information is encoded the way that it is. Her recent focus is on error control in neural codes, rules for synaptic plasticity that enable neural circuit organization, and questions at the nexus of information and dynamics in neural systems, such as understand how coding and statistics fundamentally constrain dynamics and vice-versa.

Tristan Collins conducts research at the intersection of geometric analysis, partial differential equations, and algebraic geometry. In joint work with Valentino Tosatti, Collins described the singularity formation of the Ricci flow on Kahler manifolds in terms of algebraic data. In recent work with Gabor Szekelyhidi, he gave a necessary and sufficient algebraic condition for existence of Ricci-flat metrics, which play an important role in string theory and mathematical physics. This result lead to the discovery of infinitely many new Einstein metrics on the 5-dimensional sphere. With Shing-Tung Yau and Adam Jacob, Collins is currently studying the relationship between categorical stability conditions and existence of solutions to differential equations arising from mirror symmetry.

Collins earned his BS in mathematics at the University of British Columbia in 2009, after which he completed his PhD in mathematics at Columbia University in 2014 under the direction of Duong H. Phong. Following a four-year appointment as a Benjamin Peirce Assistant Professor at Harvard University, Collins joins MIT as an assistant professor in the Department of Mathematics.

Julien de Wit develops and applies new techniques to study exoplanets, their atmospheres, and their interactions with their stars. While a graduate student in the Sara Seager group at MIT, he developed innovative analysis techniques to map exoplanet atmospheres, studied the radiative and tidal planet-star interactions in eccentric planetary systems, and constrained the atmospheric properties and mass of exoplanets solely from transmission spectroscopy. He plays a critical role in the TRAPPIST/SPECULOOS project, headed by Université of Liège, leading the atmospheric characterization of the newly discovered TRAPPIST-1 planets, for which he has already obtained significant results with the Hubble Space Telescope. De Wit’s efforts are now also focused on expanding the SPECULOOS network of telescopes in the northern hemisphere to continue the search for new potentially habitable TRAPPIST-1-like systems.

De Wit earned a BEng in physics and mechanics from the Université de Liège in Belgium in 2008, an MS in aeronautic engineering and an MRes in astrophysics, planetology, and space sciences from the Institut Supérieur de l’Aéronautique et de l’Espace at the Université de Toulouse, France in 2010; he returned to the Université de Liège for an MS in aerospace engineering, completed in 2011. After finishing his PhD in planetary sciences in 2014 and a postdoc at MIT, both under the direction of Sara Seager, he joins the MIT faculty in the Department of Earth, Atmospheric and Planetary Sciences as an assistant professor.

After earning a BS in mathematics and physics at the University of Michigan, Fiete obtained her PhD in 2004 at Harvard University in the Department of Physics. While holding an appointment at the Kavli Institute for Theoretical Physics at the University of California, Santa Barbara from 2004 to 2006, she was also a visiting member of the Center for Theoretical Biophysics at the University of California at San Diego. Fiete subsequently spent two years at Caltech as a Broad Fellow in brain circuitry, and in 2008 joined the faculty of the University of Texas at Austin. She joins the MIT faculty in the Department of Brain and Cognitive Sciences as an associate professor with tenure.

Ankur Jain explores the biology of RNA aggregation. Several genetic neuromuscular disorders, such as myotonic dystrophy and amyotrophic lateral sclerosis, are caused by expansions of nucleotide repeats in their cognate disease genes. Such repeats cause the transcribed RNA to form pathogenic clumps or aggregates. Jain uses a variety of biophysical approaches to understand how the RNA aggregates form, and how they can be disrupted to restore normal cell function. Jain will also study the role of RNA-DNA interactions in chromatin organization, investigating whether the RNA transcribed from telomeres (the protective repetitive sequences that cap the ends of chromosomes) undergoes the phase separation that characterizes repeat expansion diseases.

Jain completed a bachelor’s of technology degree in biotechnology and biochemical engineering at the Indian Institute of Technology Kharagpur, India in 2007, followed by a PhD in biophysics and computational biology at the University of Illinois at Urbana-Champaign under the direction of Taekjip Ha in 2013. After a postdoc at the University of California at San Francisco, he joins the MIT faculty in the Department of Biology as an assistant professor with an appointment as a member of the Whitehead Institute for Biomedical Research.

Kiyoshi Masui works to understand fundamental physics and the evolution of the universe through observations of the large-scale structure — the distribution of matter on scales much larger than galaxies. He works principally with radio-wavelength surveys to develop new observational methods such as hydrogen intensity mapping and fast radio bursts. Masui has shown that such observations will ultimately permit precise measurements of properties of the early and late universe and enable sensitive searches for primordial gravitational waves. To this end, he is working with a new generation of rapid-survey digital radio telescopes that have no moving parts and rely on signal processing software running on large computer clusters to focus and steer, including work on the Canadian Hydrogen Intensity Mapping Experiment (CHIME).

Masui obtained a BSCE in engineering physics at Queen’s University, Canada in 2008 and a PhD in physics at the University of Toronto in 2013 under the direction of Ue-Li Pen. After postdoctoral appointments at the University of British Columbia as the Canadian Institute for Advanced Research Global Scholar and the Canadian Institute for Theoretical Astrophysics National Fellow, Masui joins the MIT faculty in the Department of Physics as an assistant professor.

Phiala Shanahan studies theoretical nuclear and particle physics, in particular the structure and interactions of hadrons and nuclei from the fundamental (quark and gluon) degrees of freedom encoded in the Standard Model of particle physics. Shanahan’s recent work has focused on the role of gluons, the force carriers of the strong interactions described by quantum chromodynamics (QCD), in hadron and nuclear structure by using analytic tools and high-performance supercomputing. She recently achieved the first calculation of the gluon structure of light nuclei, making predictions that will be testable in new experiments proposed at Jefferson National Accelerator Facility and at the planned Electron-Ion Collider. She has also undertaken extensive studies of the role of strange quarks in the proton and light nuclei that sharpen theory predictions for dark matter cross-sections in direct detection experiments. To overcome computational limitations in QCD calculations for hadrons and in particular for nuclei, Shanahan is pursuing a program to integrate modern machine learning techniques in computational nuclear physics studies.

Shanahan obtained her BS in 2012 and her PhD in 2015, both in physics, from the University of Adelaide. She completed postdoctoral work at MIT in 2017, then held a joint position as an assistant professor at the College of William and Mary and senior staff scientist at the Thomas Jefferson National Accelerator Facility until 2018. She returns to MIT in the Department of Physics as an assistant professor.

Nike Sun works in probability theory at the interface of statistical physics and computation. Her research focuses in particular on phase transitions in average-case (randomized) formulations of classical computational problems. Her joint work with Jian Ding and Allan Sly establishes the satisfiability threshold of random k-SAT for large k, and relatedly the independence ratio of random regular graphs of large degree. Both are long-standing open problems where heuristic methods of statistical physics yield detailed conjectures, but few rigorous techniques exist. More recently she has been investigating phase transitions of dense graph models.

Sun completed BA mathematics and MA statistics degrees at Harvard in 2009, and an MASt in mathematics at Cambridge in 2010. She received her PhD in statistics from Stanford University in 2014 under the supervision of Amir Dembo. She held a Schramm fellowship at Microsoft New England and MIT Mathematics in 2014-2015 and a Simons postdoctoral fellowship at the University of California at Berkeley in 2016, and joined the Berkeley Department of Statistics as an assistant professor in 2016. She returns to the MIT Department of Mathematics as an associate professor with tenure.

Alison Wendlandt focuses on the development of selective, catalytic reactions using the tools of organic and organometallic synthesis and physical organic chemistry. Mechanistic study plays a central role in the development of these new transformations. Her projects involve the design of new catalysts and catalytic transformations, identification of important applications for selective catalytic processes, and elucidation of new mechanistic principles to expand powerful existing catalytic reaction manifolds.

Wendlandt received a BS in chemistry and biological chemistry from the University of Chicago in 2007, an MS in chemistry from Yale University in 2009, and a PhD in chemistry from the University of Wisconsin at Madison in 2015 under the direction of Shannon S. Stahl. Following an NIH Ruth L. Krichstein Postdoctoral Fellowship at Harvard University, Wendlandt joins the MIT faculty in the Department of Chemistry as an assistant professor.

Chenyang Xu specializes in higher-dimensional algebraic geometry, an area that involves classifying algebraic varieties, primarily through the minimal model program (MMP). MMP was introduced by Fields Medalist S. Mori in the early 1980s to make advances in higher dimensional birational geometry. The MMP was further developed by Hacon and McKernan in the mid-2000s, so that the MMP could be applied to other questions. Collaborating with Hacon, Xu expanded the MMP to varieties of certain conditions, such as those of characteristic p, and, with Hacon and McKernan, proved a fundamental conjecture on the MMP, generating a great deal of follow-up activity. In collaboration with Chi Li, Xu proved a conjecture of Gang Tian concerning higher-dimensional Fano varieties, a significant achievement. In a series of papers with different collaborators, he successfully applied MMP to singularities.

Xu received his BS in 2002 and MS in 2004 in mathematics from Peking University, and completed his PhD at Princeton University under János Kollár in 2008. He came to MIT as a CLE Moore Instructor in 2008-2011, and was subsequently appointed assistant professor at the University of Utah. He returned to Peking University as a research fellow at the Beijing International Center of Mathematical Research in 2012, and was promoted to professor in 2013. Xu joins the MIT faculty as a full professor in the Department of Mathematics.

Zhiwei Yun’s research is at the crossroads between algebraic geometry, number theory, and representation theory. He studies geometric structures aiming at solving problems in representation theory and number theory, especially those in the Langlands program. While he was a CLE Moore Instructor at MIT, he started to develop the theory of rigid automorphic forms, and used it to answer an open question of J-P Serre on motives, which also led to a major result on the inverse Galois problem in number theory. More recently, in his joint work with Wei Zhang, they give geometric interpretation of higher derivatives of automorphic L- functions in terms of intersection numbers, which sheds new light on the geometric analogue of the Birch and Swinnerton-Dyer conjecture.

Yun earned his BS at Peking University in 2004, after which he completed his PhD at Princeton University in 2009 under the direction of Robert MacPherson. After appointments at the Institute for Advanced Study and as a CLE Moore Instructor at MIT, he held faculty appointments at Stanford and Yale. He returned to the MIT Department of Mathematics as a full professor in the spring of 2018.

Mark Harnett named Vallee Foundation Scholar

The Bert L and N Kuggie Vallee Foundation has named McGovern Institute investigator Mark Harnett a 2018 Vallee Scholar. The Vallee Scholars Program recognizes original, innovative, and pioneering work by early career scientists at a critical juncture in their careers and provides $300,000 in discretionary funds to be spent over four years for basic biomedical research. Harnett is among five researchers named to this year’s Vallee Scholars Program.

Harnett, who is also the Fred and Carole Middleton Career Development Assistant Professor in the Department of Brain and Cognitive Sciences, is being recognized for his work exploring how the biophysical features of neurons give rise to the computational power of the brain. By exploiting new technologies and approaches at the interface of biophysics and systems neuroscience, research in the Harnett lab aims to provide a new understanding of the biology underlying how mammalian brains learn. This may open new areas of research into brain disorders characterized by atypical learning and memory (such as dementia and schizophrenia) and may also have important implications for designing new, brain-inspired artificial neural networks.

The Vallee Foundation was established in 1996 by Bert and Kuggie Vallee to foster originality, creativity, and leadership within biomedical scientific research and medical education. The foundation’s goal to fund originality, innovation, and pioneering work “recognizes the future promise of these scientists who are dedicated to understanding fundamental biological processes.” Harnett joins a list of 24 Vallee Scholars, including McGovern investigator Feng Zhang, who have been appointed to the program since its inception in 2013.

Feng Zhang named winner of the 2018 Keio Medical Science Prize

Feng Zhang and Masashi Yanagisawa have been named the 2018 winners of the prestigious Keio Medical Science Prize. Zhang is being recognized for the groundbreaking development of CRISPR-Cas9-mediated genome engineering in cells and its application for medical science. Zhang is an HHMI Investigator and the James and Patricia Poitras Professor of Neuroscience at MIT, an associate professor in MIT’s Departments of Brain and Cognitive Sciences and Biological Engineering, an investigator at the McGovern Institute for Brain Research, and a core member of the Broad Institute of MIT and Harvard. Masashi Yanagisawa, Director of the International Institute for Integrative Sleep Medicine at the University of Tsukuba, is being recognized for his seminal work on sleep control mechanisms.

“We are delighted that Feng is now a Keio Prize laureate,” says McGovern Institute Director Robert Desimone. “This truly recognizes the remarkable achievements that he has made at such a young age.”

The Keio Medical Prize is awarded to a maximum of two scientists each year, and is now in its 23rd year. The prize is offered by Keio University, and the selection committee specifically looks for laureates that have made an outstanding contribution to medicine or the life sciences. The prize was initially endowed by Dr. Mitsunada Sakaguchi in 1994, with the express condition that it be used to commend outstanding science, promote medical advances in medicine and the life sciences, expand researcher networks, and contribute to the well-being of humankind. The winners receive a certificate of merit, medal, and a monetary award of 10 million yen.

Feng Zhang is a molecular biologist who has contributed to the development of multiple molecular tools to accelerate our understanding of human disease and create new therapeutic modalities. During his graduate work Zhang contributed to the development of optogenetics, a system for activating neurons using light, which has advanced our understanding of brain connectivity. Zhang went on to pioneer the deployment of the microbial CRISPR-Cas9 system for genome engineering in eukaryotic cells. The ease and specificity of the system has led to its widespread use across the life sciences and it has groundbreaking implications for disease therapeutics, biotechnology, and agriculture. Zhang has continued to mine bacterial CRISPR systems for additional enzymes with useful properties, leading to the discovery of Cas13, which targets RNA, rather than DNA, and may potentially be a way to treat genetic diseases without altering the genome. He has also developed a molecular detection system called SHERLOCK based on the Cas13 family, which can sense trace amounts of genetic material, including viruses and alterations in genes that might be linked to cancer.

“I am tremendously honored to have our work recognized by the Keio Medical Prize,” says Zhang. “It is an inspiration to us to continue our work to improve human health.”

The prize ceremony will be held on December 18th 2018 at Keio University in Tokyo, Japan.

Advancing knowledge in medical and genetic sciences

Research proposals from Laurie Boyer, associate professor of biology; Matt Shoulders, the Whitehead Career Development Associate Professor of Chemistry; and Feng Zhang, associate professor in the departments of Brain and Cognitive Sciences and Biological Engineering, Patricia and James Poitras ’63 Professor in Neuroscience, investigator at the McGovern Institute for Brain Research, and core member of the Broad Institute, have recently been selected for funding by the G. Harold and Leila Y. Mathers Foundation. These three grants from the Mathers Foundation will enable, over the next three years, key projects in the researchers’ respective labs.

Regenerative medicine holds great promise for treating heart failure, but that promise is unrealized, in part, due to a lack of sufficient understanding of heart development at the mechanistic level. Boyer’s research aims to achieve a deep, mechanistic understanding of the gene control switches that coordinate normal heart development. She then aims to leverage this knowledge and design effective strategies for rewiring faulty circuits in aging and disease.

“We are very grateful to receive support and recognition of our work from the Mathers Foundation,” said Boyer. “This award will allow us to build upon our prior work and to embark upon high risk projects that could ultimately change how we think about treating diseases resulting from faulty wiring of gene expression programs.”

Shoulders’ goal, with this support from the Mathers Foundation, is to elucidate underlying causes of osteoarthritis. There is currently no cure for osteoarthritis, which is perhaps the most common aging-related disease and is characterized by a progressive deterioration of joint cartilage culminating in inflammation, debilitating pain, and joint dysfunction. The Shoulders Group aims to test a new model for osteoarthritis — specifically, the concept that a collapse of proteostasis in aging cartilage cells creates an unrecoverable cartilage repair defect, thus initiating a self-amplifying, destructive feedback loop leading to pathology. Proteostasis collapse in aging cells is a well-known, disease-causing phenomenon that has previously been considered primarily in the context of neurodegenerative disorders. If correct, the proteostasis collapse model for osteoarthritis could one day lead to a novel class of therapeutic options for the disease.

“We are delighted to receive this generous support from the Mathers Foundation, which makes it possible for us to pursue an outside-the-box, high-risk/high-impact idea regarding the origins of osteoarthritis,” said Shoulders. “The research we are now able to pursue will not only provide fundamental, molecular-level insights into joint function, but also could change how we think about this widespread disease.”

Many genetic diseases are caused by the change of just a single base of DNA. Zhang is a leader in the field of genome editing, and he and his team have developed an array of tools based on the microbial immune CRISPR-Cas systems that can manipulate DNA and RNA in human cells. Together, these tools are changing the way molecular biology research is conducted, and they hold immense potential as therapeutic agents to correct thousands of genetic diseases. Now, with the support of the Mathers Foundation, Zhang is working to realize this potential by developing a CRISPR-based therapeutic that works at the level of RNA and offers a safe, effective route to treating a range of diseases, including diseases of the brain and central nervous system, which are difficult to treat with existing gene therapies.

“The generous support from the Mathers Foundation allows us the freedom to explore this exciting new direction for CRISPR-based technologies,” Zhang stated.

Known for their generosity and philanthropy, G. Harold and Leila Y. Mathers created their foundation with the goal of distributing their wealth among sustainable, charitable causes, with a particular interest in basic scientific research. The Mathers Foundation, whose ongoing mission is to advance knowledge in the life sciences by sponsoring scientific research and applying learnings and discoveries to benefit mankind, has issued grants since 1982.

Ed Boyden and Feng Zhang named Howard Hughes Medical Institute Investigators

Two members of the MIT faculty were named Howard Hughes Medical Institute (HHMI) investigators today. Ed Boyden and Feng Zhang join a community of 300 HHMI scientists who are “transforming biology and medicine, one discovery at a time.” Both researchers have been instrumental in recognizing, developing, and sharing robust tools with broad utility that have revolutionized the life sciences.

“We are thrilled that Ed and Feng are being recognized in this way” says Robert Desimone, director of the McGovern Institute for Brain Research at MIT. “Being named to the investigator program recognizes their previous achievements and allows them to follow the innovative path that is a trait of their research.”

HHMI selects new Investigators to join its flagship program through periodic competitions. In choosing researchers to join its investigator program, HHMI specifically aims to select ‘people, not projects’ and identifies trail blazers in the biomedical sciences. The organization provides support for an unusual length of time, seven years with a renewal process at the end of that period, thus giving selected scientists the time and freedom to tackle difficult and important biological questions. HHMI-affiliated scientists continue to work at their home institution. The HHMI Investigator program currently funds 300 scientists at 60 research institutions across the United States.

Ed Boyden, the Y. Eva Tan Professor in Neurotechnology at MIT, has pioneered a number of technologies that allow visualization and manipulation of complex biological systems. Boyden worked, along with Karl Deisseroth and Feng Zhang, on optogenetics, a system that leverages microbial opsins to manipulate neuronal activity using light. This technology has transformed our ability to examine neuronal function in vivo. Boyden’s work initiated optogenetics, then extended it into a multicolor, high-speed, and noninvasive toolbox. Subsequent technological advances developed by Boyden and his team include expansion microscopy, an imaging strategy that overcomes the limits of light microscopy by expanding biological specimens in a controlled fashion. Boyden’s team also recently developed a directed evolution system that is capable of robotically screening hundreds of thousands of mutated proteins for specific properties within hours. He and his team recently used the system to develop a high-performance fluorescent voltage indicator.

“I am honored and excited to become an HHMI investigator,” says Boyden, who is also a member of MIT’s McGovern Institute for Brain Research and Koch Institute for Integrative Cancer Research and an associate professor in the Program in Media Arts and Sciences at the MIT Media Lab; the MIT Department of Brain and Cognitive Sciences; and the MIT Department of Biological Engineering. “This will give my group the ability to open up completely new areas of science, in a way that would not be possible with traditional funding.”

Feng Zhang is a molecular biologist focused on building new tools for probing the human brain. As a graduate student, Zhang was part of the team that developed optogenetics. Zhang went on to develop other innovative tools. These achievements include the landmark deployment of the microbial CRISPR-Cas9 system for genome engineering in eukaryotic cells. The ease and specificity of the system has led to its widespread use. Zhang has continued to mine bacterial CRISPR systems for additional enzymes with useful properties, leading to the discovery of Cas13, which targets RNA, rather than DNA. By leveraging the unique properties of Cas13, Zhang and his team created a precise RNA editing tool, which may potentially be a safer way to treat genetic diseases because the genome does not need to be cut, as well as a molecular detection system, termed SHERLOCK, which can sense trace amounts of genetic material, such as viruses.

“It is so exciting to join this exceptional scientific community,” says Zhang, “and be given this opportunity to pursue our research into engineering natural systems.”

Zhang is the James and Patricia Poitras Professor of Neuroscience at MIT, an associate professor in the MIT departments of Brain and Cognitive Sciences and Biological Engineering, an investigator at the McGovern Institute for Brain Research, and a core member of the Broad Institute of MIT and Harvard.

The MIT Media Lab, Broad Institute of MIT and Harvard, and MIT departments of Brain and Cognitive Sciences and Biological Engineering contributed to this article.

Feng Zhang elected to National Academy of Sciences

Feng Zhang has been elected to join the National Academy of Sciences (NAS), a prestigious, non-profit society of distinguished scholars that was established through an Act of Congress signed by Abraham Lincoln in 1863. Zhang is the Patricia and James Poitras ’63 Professor in Neuroscience at MIT, an associate professor in the departments of Brain and Cognitive Sciences and Biological Engineering, an investigator at the McGovern Institute for Brain Research, and a core member of the Broad Institute of MIT and Harvard. Scientists are elected to the National Academy of Sciences by members of the organization as recognition of their outstanding contributions to research.

“Because it comes from the scientific community, election to the National Academy of Sciences is a very special honor,” says Zhang, “and I’m grateful to all of my colleagues for the recognition and support.”

Zhang has revolutionized research across the life sciences by developing and sharing a number of powerful molecular biology tools, most notably, genome engineering tools based on the microbial CRISPR-Cas9 system. The simplicity and precision of Cas9 has led to its widespread adoption by researchers around the world. Indeed, the Zhang lab has shared more than 49,000 plasmids and reagents with more than 2,300 institutions across 62 countries through the non-profit plasmid repository Addgene.

Zhang continues to pioneer CRISPR-based technologies. For example, Zhang and his colleagues discovered new CRISPR systems that use a single enzyme to target RNA, rather than DNA. They have engineered these systems to achieve precise editing of single bases of RNA, enabling a wide range of applications in research, therapeutics, and biotechnology. Recently, he and his team also reported a highly sensitive nucleic acid detection system based on the CRISPR enzyme Cas13 that can be used in the field for monitoring pathogens and other molecular diagnostic applications.

Zhang has long shown a keen eye for recognizing the potential of transformative technologies and developing robust tools with broad utility. As a graduate student in Karl Diesseroth’s group at Stanford, he contributed to the development of optogenetics, a light-based technology that allows scientists to both track neurons and causally test outcomes of neuronal activity. Zhang also created an efficient system for reprogramming TAL effector proteins (TALEs) to specifically recognize and modulate target genes.

“Feng Zhang is unusually young to be elected into the National Academy of Science, which attests to the tremendous impact he is having on the field even at an early stage of his career, “ says Robert Desimone, director of the McGovern Institute for Brain Research at MIT.

This year the NAS, an organization that includes over 500 Nobel Laureates, elected 84 new members from across disciplines. The mission of the organization is to provide sound, objective advice on science to the nation, and to further the cause of science and technology in America. Four MIT professors were elected this year, with Amy Finkelstein (recognized for contributions to economics) as well as Mehran Karder and Xiao-Gang Wen (for their research in the realm of physics) also becoming members of the Academy.

The formal induction ceremony for new NAS members will be held at the Academy’s annual meeting in Washington D.C. next spring.

McGovern Institute awards 2018 Scolnick Prize to David Anderson

The McGovern Institute for Brain Research at MIT announced today that David J. Anderson of Caltech is the winner of the 2018 Edward M. Scolnick Prize in Neuroscience. He was awarded the prize for his contributions to the isolation and characterization of neural stem cells and for his research on neural circuits that control emotional behaviors in animal models. The Scolnick Prize is awarded annually by the McGovern Institute to recognize outstanding advances in any field of neuroscience.

“We congratulate David Anderson on being selected for this award,” says Robert Desimone, director of the McGovern Institute and chair of the selection committee. “His work has provided fundamental insights into neural development and the structure and function of neural circuits.”

Anderson is the Seymour Benzer Professor of Biology at Caltech, where he has been on the faculty since 1986, and is currently the director of the Tianqiao and Chrissy Chen Institute for Neuroscience. He is also an investigator of the Howard Hughes Medical Institute. He received his PhD in cell biology from Rockefeller University, where he trained with the late Günter Blobel, and he received his postdoctoral training in molecular biology with Richard Axel at Columbia University.

For the first 20 years of his career, Anderson focused his research on the biology of neural stem cells and was the first to isolate a multipotent stem cell from the mammalian nervous system. He subsequently identified growth factors and master transcriptional regulators that control their differentiation into neurons and glial cells. Anderson also made the unexpected and fundamental discovery that arteries and veins are genetically distinct even before the heart begins to beat. Combining this discovery with his interest in neural development, Anderson went on to contribute to the expanding field of vessel identity and the study of molecular cross-talk between developing nerves and blood vessels.

More recently, Anderson has shifted his focus from neural development to the study of neural circuits that control emotional behaviors, such as fear, anxiety, and aggression, in animal models. Anderson has employed various technologies for neural circuit manipulation including optogenetics, pharmacogenetics, electrophysiology, in vivo imaging, and quantitative behavior analysis using machine vision-based approaches. He developed and applied powerful genetic methods to identify and manipulate cells and circuits involved in emotional behaviors in mice — including ways to inactivate neurons reversibly and to trace their synaptic targets. In addition to this work on vertebrate neural circuitry, Anderson mounted a parallel inquiry that dissects the genes and circuits underlying aggressive behavior in the fruitfly Drosophila melanogaster, and has become an international leader in this rapidly developing field.

Among his many honors and awards, Anderson is a Perl-UNC Neuroscience Prize recipient, a fellow of the American Academy of Arts and Sciences and a member of the National Academy of Sciences. Anderson also played a key role in the foundation of the Allen Institute for Brain Sciences and the Allen Brain Atlas, a comprehensive open-source atlas of gene expression in the mouse brain.

Anderson will deliver the Scolnick Prize lecture at the McGovern Institute on Friday, Sept. 21 at 4 p.m. in the Singleton Auditorium of MIT’s Brain and Cognitive Sciences Complex (Room 46-3002). The event is free and open to the public.

Institute launches the MIT Intelligence Quest

MIT today announced the launch of the MIT Intelligence Quest, an initiative to discover the foundations of human intelligence and drive the development of technological tools that can positively influence virtually every aspect of society.

The announcement was first made in a letter MIT President L. Rafael Reif sent to the Institute community.

At a time of rapid advances in intelligence research across many disciplines, the Intelligence Quest will encourage researchers to investigate the societal implications of their work as they pursue hard problems lying beyond the current horizon of what is known.

Some of these advances may be foundational in nature, involving new insight into human intelligence, and new methods to allow machines to learn effectively. Others may be practical tools for use in a wide array of research endeavors, such as disease diagnosis, drug discovery, materials and manufacturing design, automated systems, synthetic biology, and finance.

“Today we set out to answer two big questions, says President Reif. “How does human intelligence work, in engineering terms? And how can we use that deep grasp of human intelligence to build wiser and more useful machines, to the benefit of society?”

MIT Intelligence Quest: The Core and The Bridge

MIT is poised to lead this work through two linked entities within MIT Intelligence Quest. One of them, “The Core,” will advance the science and engineering of both human and machine intelligence. A key output of this work will be machine-learning algorithms. At the same time, MIT Intelligence Quest seeks to advance our understanding of human intelligence by using insights from computer science.

The second entity, “The Bridge” will be dedicated to the application of MIT discoveries in natural and artificial intelligence to all disciplines, and it will host state-of-the-art tools from industry and research labs worldwide.

The Bridge will provide a variety of assets to the MIT community, including intelligence technologies, platforms, and infrastructure; education for students, faculty, and staff about AI tools; rich and unique data sets; technical support; and specialized hardware.

Along with developing and advancing the technologies of intelligence, MIT Intelligence Quest researchers will also investigate the societal and ethical implications of advanced analytical and predictive tools. There are already active projects and groups at the Institute investigating autonomous systems, media and information quality, labor markets and the work of the future, innovation and the digital economy, and the role of AI in the legal system.

In all its activities, MIT Intelligence Quest is intended to take advantage of — and strengthen — the Institute’s culture of collaboration. MIT Intelligence Quest will connect and amplify existing excellence across labs and centers already engaged in intelligence research. It will also establish shared, central spaces conducive to group work, and its resources will directly support research.

“Our quest is meant to power world-changing possibilities,” says Anantha Chandrakasan, dean of the MIT School of Engineering and Vannevar Bush Professor of Electrical Engineering and Computer Science. Chandrakasan, in collaboration with Provost Martin Schmidt and all four of MIT’s other school deans, has led the development and establishment of MIT Intelligence Quest.

“We imagine preventing deaths from cancer by using deep learning for early detection and personalized treatment,” Chandrakasan continues. “We imagine artificial intelligence in sync with, complementing, and assisting our own intelligence. And we imagine every scientist and engineer having access to human-intelligence-inspired algorithms that open new avenues of discovery in their fields. Researchers across our campus want to push the boundaries of what’s possible.”

Engaging energetically with partners

In order to power MIT Intelligence Quest and achieve results that are consistent with its ambitions, the Institute will raise financial support through corporate sponsorship and philanthropic giving.

MIT Intelligence Quest will build on the model that was established with the MIT–IBM Watson AI Lab, which was announced in September 2017. MIT researchers will collaborate with each other and with industry on challenges that range in scale from the very broad to the very specific.

“In the short time since we began our collaboration with IBM, the lab has garnered tremendous interest inside and outside MIT, and it will be a vital part of MIT Intelligence Quest,” says President Reif.

John E. Kelly III, IBM senior vice president for cognitive solutions and research, says, “To take on the world’s greatest challenges and seize its biggest opportunities, we need to rapidly advance both AI technology and our understanding of human intelligence. Building on decades of collaboration — including our extensive joint MIT–IBM Watson AI Lab — IBM and MIT will together shape a new agenda for intelligence research and its applications. We are proud to be a cornerstone of this expanded initiative.”

MIT will seek to establish additional entities within MIT Intelligence Quest, in partnership with corporate and philanthropic organizations.

Why MIT

MIT has been on the frontier of intelligence research since the 1950s, when pioneers Marvin Minsky and John McCarthy helped establish the field of artificial intelligence.

MIT now has over 200 principal investigators whose research bears directly on intelligence. Researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and the MIT Department of Brain and Cognitive Sciences (BCS) — along with the McGovern Institute for Brain Research and the Picower Institute for Learning and Memory — collaborate on a range of projects. MIT is also home to the National Science Foundation–funded center for Brains, Minds and Machines (CBMM) — the only national center of its kind.

Four years ago, MIT launched the Institute for Data, Systems, and Society (IDSS) with a mission promoting data science, particularly in the context of social systems. It is  anticipated that faculty and students from IDSS will play a critical role in this initiative.

Faculty from across the Institute will participate in the initiative, including researchers in the Media Lab, the Operations Research Center, the Sloan School of Management, the School of Architecture and Planning, and the School of Humanities, Arts, and Social Sciences.

“Our quest will amount to a journey taken together by all five schools at MIT,” says Provost Schmidt. “Success will rest on a shared sense of purpose and a mix of contributions from a wide variety of disciplines. I’m excited by the new thinking we can help unlock.”

At the heart of MIT Intelligence Quest will be collaboration among researchers in human and artificial intelligence.

“To revolutionize the field of artificial intelligence, we should continue to look to the roots of intelligence: the brain,” says James DiCarlo, department head and Peter de Florez Professor of Neuroscience in the Department of Brain and Cognitive Sciences. “By working with engineers and artificial intelligence researchers, human intelligence researchers can build models of the brain systems that produce intelligent behavior. The time is now, as model building at the scale of those brain systems is now possible. Discovering how the brain works in the language of engineers will not only lead to transformative AI — it will also illuminate entirely new ways to repair, educate, and augment our own minds.”

Daniela Rus, the Andrew (1956) and Erna Viterbi Professor of Electrical Engineering and Computer Science at MIT, and director of CSAIL, agrees. MIT researchers, she says, “have contributed pioneering and visionary solutions for intelligence since the beginning of the field, and are excited to make big leaps to understand human intelligence and to engineer significantly more capable intelligent machines. Understanding intelligence will give us the knowledge to understand ourselves and to create machines that will support us with cognitive and physical work.”

David Siegel, who earned a PhD in computer science at MIT in 1991 pursuing research at MIT’s Artificial Intelligence Laboratory, and who is a member of the MIT Corporation and an advisor to the MIT Center for Brains, Minds, and Machines, has been integral to the vision and formation of MIT Intelligence Quest and will continue to help shape the effort. “Understanding human intelligence is one of the greatest scientific challenges,” he says, “one that helps us understand who we are while meaningfully advancing the field of artificial intelligence.” Siegel is co-chairman and a founder of Two Sigma Investments, LP.

The fruits of research

MIT Intelligence Quest will thus provide a platform for long-term research, encouraging the foundational advances of the future. At the same time, MIT professors and researchers may develop technologies with near-term value, leading to new kinds of collaborations with existing companies — and to new companies.

Some such entrepreneurial efforts could be supported by The Engine, an Institute initiative launched in October 2016 to support startup companies pursuing particularly ambitious goals.

Other innovations stemming from MIT Intelligence Quest could be absorbed into the innovation ecosystem surrounding the Institute — in Kendall Square, Cambridge, and the Boston metropolitan area. MIT is located in close proximity to a world-leading nexus of biotechnology and medical-device research and development, as well as a cluster of leading-edge technology firms that study and deploy machine intelligence.

MIT also has roots in centers of innovation elsewhere in the United States and around the world, through faculty research projects, institutional and industry collaborations, and the activities and leadership of its alumni. MIT Intelligence Quest will seek to connect to innovative companies and individuals who share MIT’s passion for work in intelligence.

Eric Schmidt, former executive chairman of Alphabet, has helped MIT form the vision for MIT Intelligence Quest. “Imagine the good that can be done by putting novel machine-learning tools in the hands of those who can make great use of them,” he says. “MIT Intelligence Quest can become a fount of exciting new capabilities.”

“I am thrilled by today’s news,” says President Reif. “Drawing on MIT’s deep strengths and signature values, culture, and history, MIT Intelligence Quest promises to make important contributions to understanding the nature of intelligence, and to harnessing it to make a better world.”

“MIT is placing a bet,” he says, “on the central importance of intelligence research to meeting the needs of humanity.”