McGovern Institute postcard collection

A collection of 13 postcards arranged in columns.
The McGovern Institute postcard collection, 2023.

The McGovern Institute may be best known for its scientific breakthroughs, but a captivating series of brain-themed postcards developed by McGovern researchers and staff now reveals the institute’s artistic side.

What began in 2017 with a series of brain anatomy postcards inspired by the U.S. Works Projects Administration’s iconic national parks posters, has grown into a collection of twelve different prints, each featuring a unique fusion of neuroscience and art.

More information about each series in the McGovern Institute postcard collection, including the color-your-own mindfulness postcards, can be found below.

Mindfulness Postcard Series, 2023

In winter 2023, the institute released its mindfulness postcard series, a collection of four different neuroscience-themed illustrations that can be colored in with pencils, markers, or paint. The postcard series was inspired by research conducted in John Gabrieli’s lab, which found that practicing mindfulness reduced children’s stress levels and negative emotions during the pandemic. These findings contribute to a growing body of evidence that practicing mindfulness — focusing awareness on the present, typically through meditation, but also through coloring — can change patterns of brain activity associated with emotions and mental health.

Download and color your own postcards.

Genes

The McGovern Institute is at the cutting edge of applications based on CRISPR, a genome editing tool pioneered by McGovern Investigator Feng Zhang. Hidden within this DNA-themed postcard is a clam, virus, bacteriophage, snail, and the word CRISPR. Click the links to learn how these hidden elements relate to genetic engineering research at the McGovern Institute.

 

Line art showing strands of DNA and the McGovern Institute logo.
The McGovern Institute’s “mindfulness” postcard series includes this DNA-themed illustration containing five hidden design elements related to McGovern research. Image: Joseph Laney

Neurons

McGovern researchers probe the nanoscale and cellular processes that are critical to brain function, including the complex computations conducted in neurons, to the synapses and neurotransmitters that facilitate messaging between cells. Find the mouse, worm, and microscope — three critical elements related to cellular and molecular neuroscience research at the McGovern Institute — in the postcard below.

 

Line art showing multiple neurons and the McGovern Institute logo.
The McGovern Institute’s “mindfulness” postcard series includes this neuron-themed illustration containing three hidden design elements related to McGovern research. Image: Joseph Laney

Human Brain

Cognitive neuroscientists at the McGovern Institute examine the brain processes that come together to inform our thoughts and understanding of the world.​ Find the musical note, speech bubbles, and human face in this postcard and click on the links to learn more about how these hidden elements relate to brain research at the McGovern Institute.

 

Line art of a human brain and the McGovern Institute logo.
The McGovern Institute’s “mindfulness” postcard series includes this brain-themed illustration containing three hidden design elements related to McGovern research. Image: Joseph Laney

Artificial Intelligence

McGovern researchers develop machine learning systems that mimic human processing of visual and auditory cues and construct algorithms to help us understand the complex computations made by the brain. Find the speech bubbles, DNA, and cochlea (spiral) in this postcard and click on the links to learn more about how these hidden elements relate to computational neuroscience research at the McGovern Institute.

Line art showing an artificial neural network in the shape of the human brain and the McGovern Institute logo.
The McGovern Institute’s “mindfulness” postcard series includes this AI-themed illustration containing three hidden design elements related to McGovern research. Image: Joseph Laney

Neuron Postcard Series, 2019

In 2019, the McGovern Institute released a second series of postcards based on the anatomy of a neuron. Each postcard includes text on the back side that describes McGovern research related to that specific part of the neuron. The descriptive text for each postcard is shown beloSynapse

Synapse

Snow melting off the branch of a bush at the water's edge creates a ripple effect in the pool of water below. Words at the bottom of the image say "It All Begins at the SYNAPSE"Signals flow through the nervous system from one neuron to the next across synapses.

Synapses are exquisitely organized molecular machines that control the transmission of information.

McGovern researchers are studying how disruptions in synapse function can lead to brain disorders like autism.

Image: Joseph Laney

Axon

Illustration of three bears hunting for fish in a flowing river with the words: "Axon: Where Action Finds Potential"The axon is the long, thin neural cable that carries electrical impulses called action potentials from the soma to synaptic terminals at downstream neurons.

Researchers at the McGovern Institute are developing and using tracers that label axons to reveal the elaborate circuit architecture of the brain.

Image: Joseph Laney

Soma

An elk stands on a rocky outcropping overlooking a large lake with an island in the center. Words at the top read: "Collect Your Thoughts at the Soma"The soma, or cell body, is the control center of the neuron, where the nucleus is located.

It connects the dendrites to the axon, which sends information to other neurons.

At the McGovern Institute, neuroscientists are targeting the soma with proteins that can activate single neurons and map connections in the brain.

Image: Joseph Laney

Dendrites

A mountain lake at sunset with colorful fish and snow from a distant mountaintop melting into the lake. Words say "DENDRITIC ARBOR"Long branching neuronal processes called dendrites receive synaptic inputs from thousands of other neurons and carry those signals to the cell body.

McGovern neuroscientists have discovered that human dendrites have different electrical properties from those of other species, which may contribute to the enhanced computing power of the human brain.

Image: Joseph Laney

Brain Anatomy Postcard Series, 2017

The original brain anatomy-themed postcard series, developed in 2017, was inspired by the U.S. Works Projects Administration’s iconic national parks posters created in the 1930s and 1940s. Each postcard includes text on the back side that describes McGovern research related to that specific part of the neuron. The descriptive text for each postcard is shown below.

Sylvian Fissure

Illustration of explorer in cave labeled with temporal and parietal letters
The Sylvian fissure is a prominent groove on the right side of the brain that separates the frontal and parietal lobes from the temporal lobe. McGovern researchers are studying a region near the right Sylvian fissure, called the rTPJ, which is involved in thinking about what another person is thinking.

Hippocampus

The hippocampus, named after its resemblance to the seahorse, plays an important role in memory. McGovern researchers are studying how changes in the strength of synapses (connections between neurons) in the hippocampus contribute to the formation and retention of memories.

Basal Ganglia

The basal ganglia are a group of deep brain structures best known for their control of movement. McGovern researchers are studying how the connections between the cerebral cortex and a part of the basal ganglia known as the striatum play a role in emotional decision making and motivation.

 

 

 

The arcuate fasciculus is a bundle of axons in the brain that connects Broca’s area, involved in speech production, and Wernicke’s area, involved in understanding language. McGovern researchers have found a correlation between the size of this structure and the risk of dyslexia in children.

 

 

Order and Share

To order your own McGovern brain postcards, contact our colleagues at the MIT Museum, where proceeds will support current and future exhibitions at the growing museum.

Please share a photo of yourself in your own lab (or natural habitat) with one of our cards on social media. Tell us what you’re studying and don’t forget to tag us @mcgovernmit using the hashtag #McGovernPostcards.

Ed Boyden elected to National Academy of Sciences

Ed Boyden has been elected to join the National Academy of Sciences (NAS). The organization, established by an act of Congress during the height of the Civil War, was founded to provide independent and objective advice on scientific matters to the nation, and is actively engaged in furthering science in the United States. Each year NAS members recognize fellow scientists through election to the academy based on their distinguished and continuing achievements in original research.

“I’m very honored and grateful to have been elected to the NAS,” says Boyden. “This is a testament to the work of many graduate students, postdoctoral scholars, research scientists, and staff at MIT who have worked with me over the years, and many collaborators and friends at MIT and around the world who have helped our group on this mission to advance neuroscience through new tools and ways of thinking.”

Boyden’s research creates and applies technologies that aim to expand our understanding of the brain. He notably co-invented optogenetics as an independent side collaboration, conducted in parallel to his PhD studies, a game-changing technology that has revolutionized neurobiology. This technology uses targeted expression of light-sensitive channels and pumps to activate or suppress neuronal activity in vivo using light. Optogenetics quickly swept the field of neurobiology and has been leveraged to understand how specific neurons and brain regions contribute to behavior and to disease.

His research since has an overarching focus on understanding the brain. To this end, he and his lab have the ambitious goal of developing technologies that can map, record, and manipulate the brain. This has led, as selected examples, to the invention of expansion microscopy, a super-resolution imaging technology that can capture neuron’s microstructures and reveal their complex connections, even across large-scale neural circuits; voltage-sensitive fluorescent reporters that allow neural activity to be monitored in vivo; and temporal interference stimulation, a non-invasive brain stimulation technique that allows selective activation of subcortical brain regions.

“We are all incredibly happy to see Ed being elected to the academy,” says Robert Desimone, director of the McGovern Institute for Brain Research at MIT. “He has been consistently innovative, inventing new ways of manipulating and observing neurons that are revolutionizing the field of neuroscience.”

This year the NAS, an organization that includes over 500 Nobel Laureates, elected 100 new members and 25 foreign associates. Three MIT professors were elected this year, with Paula T. Hammond (David H. Koch (1962) Professor of Engineering and Department Head, Chemical Engineering) and Aviv Regev (HHMI Investigator and Professor in the Department of Biology) being elected alongside Boyden. Boyden becomes the seventh member of the McGovern Institute faculty to join the National Academy of Sciences.

The formal induction ceremony for new NAS members, during which they sign the ledger whose first signatory is Abraham Lincoln, will be held at the Academy’s annual meeting in Washington D.C. next spring.

 

 

 

 

 

 

 

 

Guoping Feng elected to American Academy of Arts and Sciences

Four MIT faculty members are among more than 200 leaders from academia, business, public affairs, the humanities, and the arts elected to the American Academy of Arts and Sciences, the academy announced today.

One of the nation’s most prestigious honorary societies, the academy is also a leading center for independent policy research. Members contribute to academy publications, as well as studies of science and technology policy, energy and global security, social policy and American institutions, the humanities and culture, and education.

Those elected from MIT this year are:

  • Dimitri A. Antoniadis, Ray and Maria Stata Professor of Electrical Engineering;
  • Anantha P. Chandrakasan, dean of the School of Engineering and the Vannevar Bush Professor of Electrical Engineering and Computer Science;
  • Guoping Feng, the James W. (1963) and Patricia T. Poitras Professor of Brain and Cognitive Sciences; and
  • David R. Karger, professor of electrical engineering.

“We are pleased to recognize the excellence of our new members, celebrate their compelling accomplishments, and invite them to join the academy and contribute to its work,” said David W. Oxtoby, president of the American Academy of Arts and Sciences. “With the election of these members, the academy upholds the ideals of research and scholarship, creativity and imagination, intellectual exchange and civil discourse, and the relentless pursuit of knowledge in all its forms.”

The new class will be inducted at a ceremony in October in Cambridge, Massachusetts.

Since its founding in 1780, the academy has elected leading “thinkers and doers” from each generation, including George Washington and Benjamin Franklin in the 18th century, Maria Mitchell and Daniel Webster in the 19th century, and Toni Morrison and Albert Einstein in the 20th century. The current membership includes more than 200 Nobel laureates and 100 Pulitzer Prize winners.

Halassa named Max Planck Fellow

Michael Halassa was just appointed as one of the newest Max Planck Fellows. His appointment comes through the Max Planck Florida Institute for Neuroscience (MPFI), which aims to forge collaborations between exceptional neuroscientists from around the world to answer fundamental questions about brain development and function. The Max Planck Society selects cutting edge, active researchers from other institutions to fellow positions for a five-year period to promote interactions and synergies. While the program is a longstanding feature of the Max Planck Society, Halassa, and fellow appointee Yi Guo of the University of California, Santa Cruz, are the first selected fellows that are based at U.S. institutions.

Michael Halassa is an associate investigator at the McGovern Institute and an assistant professor in the Department of Brain and Cognitive Sciences at MIT. Halassa’s research focuses on the neural architectures that underlie complex cognitive processes. He is particularly interested in goal-directed attention, our ability to rapidly switch attentional focus based on high level objectives. For example, when you are in a roomful of colleagues, the mention of your name in a distant conversation can quickly trigger your ‘mind’s ear’ to eavesdrop into that conversation. This contrasts with hearing a name that sounds like yours on television, which does not usually grab your attention in the same way. In certain mental disorders such as schizophrenia, the ability to generate such high-level objectives, while also accounting for context, is perturbed. Recent evidence strongly suggests that impaired function of the prefrontal cortex and its interactions with a region of the brain called the thalamus may be altered in such disorders. It is this thalamocortical network that Halassa has been studying in mice, where his group has uncovered how the thalamus supports the ability of the prefrontal cortex to generate context-appropriate attentional signals.

The fellowship will support extending Halassa’s work into the tree shrew (Tupaia belangeri), which has been shown to have advanced cognitive abilities compared to mice while also offering many of the circuit-interrogation tools that make the mouse an attractive experimental model.

The Max Planck Florida Institute for Neuroscience (MPFI), a not-for-profit research organization, is part of the world-renowned Max Planck Society, Germany’s most successful research organization. The Max Planck Society was founded in 1911, and comprises 84 institutes and research facilities. While primarily located in Germany, there are 4 institutes and one research facility located aboard, including the Florida Institute that Halassa will collaborate with. The fellow positions were created with the goal of increasing interactions between the Max Planck Society and its institutes with faculty engaged in active research at other universities and institutions, which with this appointment now include MIT.

2019 Scolnick Prize Awarded to Richard Huganir

The McGovern Institute announced today that the winner of the 2019 Edward M. Scolnick Prize in Neuroscience is Rick Huganir, the Bloomberg Distinguished Professor of Neuroscience and Psychological and Brain Sciences at the Johns Hopkins University School of Medicine. Huganir is being recognized for his role in understanding the molecular and biochemical underpinnings of “synaptic plasticity,” changes at synapses that are key to learning and memory formation. The Scolnick Prize is awarded annually by the McGovern Institute to recognize outstanding advances in any field of neuroscience.

“Rick Huganir has made a huge impact on our understanding of how neurons communicate with one another, and the award honors him for this ground-breaking research”, says Robert Desimone, director of the McGovern Institute and the chair of the committee.

“He conducts basic research on the synapses between neurons but his work has important implications for our understanding of many brain disorders that impair synaptic function.”

As the past president of the Society for Neuroscience, the world’s largest organization of researchers that study the brain and nervous system, Huganir is well-known in the global neuroscience community. He also directs the Kavli Neuroscience Discovery Institute and serves as director of the Solomon H. Snyder Department of Neuroscience at Johns Hopkins University School of Medicine and co-director of the Johns Hopkins Brain Science Institute.

From the beginning of his research career, Huganir was interested in neurotransmitter receptors, key to signaling at the synapse. He conducted his thesis work in the laboratory of Efraim Racker at Cornell University, where he first reconstituted one of these receptors, the nicotinic acetylcholine receptor, allowing its biochemical characterization. He went on to become a postdoctoral fellow in Paul Greengard’s lab at The Rockefeller University in New York. During this time, he made the first functional demonstration that phosphorylation, a reversible chemical modification, affects neurotransmitter receptor activity. Phosphorylation was shown to regulate desensitization, the process by which neurotransmitter receptors stop reacting during prolonged exposure to the neurotransmitter.

Upon arriving at Johns Hopkins University, Huganir broadened this concept, finding that the properties and functions of other key receptors and channels, including the GABAA, AMPA, and kainite receptors, could be controlled through phosphorylation. By understanding the sites of phosphorylation and the effects of this modification, Huganir was laying the foundation for the next major steps from his lab: showing that these modifications affect the strength of synaptic connections and transmission, i.e. synaptic plasticity, and in turn, behavior and memory. Huganir also uncovered proteins that interact with neurotransmitter receptors and influence synaptic transmission and plasticity, thus uncovering another layer of molecular regulation. He went on to define how these accessory factors have such influence, showing that they impact the subcellular targeting and cycling of neurotransmitter receptors to and from the synaptic membrane. These mechanisms influence the formation of, for example, fear memory, as well as its erasure. Indeed, Huganir found that a specific type of AMPA receptor is added to synapses in the amygdala after a traumatic event, and that specific removal results in fear erasure in a mouse model.

Among many awards and honors, Huganir received the Young Investigator Award and the Julius Axelrod Award of the Society for Neuroscience. He was also elected to the American Academy of Arts and Sciences, the US National Academy of Sciences, and the Institute of Medicine. He is also a fellow of the American Association for the Advancement of Science.

The Scolnick Prize was first awarded in 2004, and was established by Merck in honor of Edward M. Scolnick who was President of Merck Research Laboratories for 17 years. Scolnick is currently a core investigator at the Broad Institute, and chief scientist emeritus of the Stanley Center for Psychiatric Research at Broad Institute.

Huganir will deliver the Scolnick Prize lecture at the McGovern Institute on May 8, 2019 at 4:00pm in the Singleton Auditorium of MIT’s Brain and Cognitive Sciences Complex (Bldg 46-3002), 43 Vassar Street in Cambridge. The event is free and open to the public.

 

 

Welcoming the first McGovern Fellows

We are delighted to kick off the new year by welcoming Omar Abuddayeh and Jonathan Gootenberg as the first members of our new McGovern Institute Fellows Program. The fellows program is a recently launched initiative that supports highly-talented and selected postdocs that are ready to initiate their own research program.

As McGovern Fellows, the pair will be given space, time, and support to help them follow scientific research directions of their own choosing. This provides an alternative to the traditional postdoctoral research route.

Abudayyeh and Gootenberg both defended their thesis in the fall of 2018, and graduated from the lab of Feng Zhang, who is the James and Patricia Poitras Professor of Neuroscience at MIT, a McGovern investigator and core member of the Broad Institute. During their time in the Zhang lab, Abudayyeh and Gootenberg worked on projects that sought and found new tools based on enzymes mined from bacterial CRISPR systems. Cas9 is the original programmable single-effector DNA-editing enzyme, and the new McGovern Fellows worked on teams that actively looked for CRISPR enzymes with properties distinct from and complementary to Cas9. In the course of their thesis work, they helped to identify RNA-guided RNA editing factors such as the Cas13 family. This work led to the development of the REPAIR system, which is capable of editing RNA, thus providing a CRISPR-based therapeutic avenue that is not based on permanent, heritable changes to the genome. In addition, they worked on a Cas13-based diagnostic system called SHERLOCK that can detect specific nucleic acid sequences. SHERLOCK is able to detect the presence of infectious agents such as Zika virus in an easily-deployable lateral flow format, similar to a pregnancy test.

We are excited to see the directions that the new McGovern Fellows take as they now arrive at the institute, and will keep you posted on scientific findings as they emerge from their labs.

 

Future Forward: Leadership Lessons from Patrick McGovern

More than half a century ago in a small gray house in Newton, Massachusetts, Patrick McGovern ’59 started what would eventually become the global publishing, research and technology investment powerhouse IDG. In the year 2000, he became a world-renowned philanthropist with his establishment of MIT’s McGovern Institute for Brain Research, one of the top neuroscience institutes in the world.

In the new book Future Forward: Leadership Lessons from Patrick McGovern, the Visionary Who Circled the Globe and Built a Technology Media Empire, author Glenn Rifkin details the legendary principles that McGovern relied on to drive the success of both IDG and the McGovern Institute: forge a clear mission that brings together everyone at all levels in an organization; empower employees to make decisions and propose new ideas; and create invigorating, positive atmospheres that bring out the best in people.

These lessons and more are detailed in Future Forward, available now at bookstores everywhere.

School of Science welcomes 10 professors

The MIT School of Science recently welcomed 10 new professors, including Ila Fiete in the departments of Brain and Cognitive Sciences, Chemistry, Biology, Physics, Mathematics, and Earth, Atmospheric and Planetary Sciences.

Ila Fiete uses computational and theoretical tools to better understand the dynamical mechanisms and coding strategies that underlie computation in the brain, with a focus on elucidating how plasticity and development shape networks to perform computation and why information is encoded the way that it is. Her recent focus is on error control in neural codes, rules for synaptic plasticity that enable neural circuit organization, and questions at the nexus of information and dynamics in neural systems, such as understand how coding and statistics fundamentally constrain dynamics and vice-versa.

Tristan Collins conducts research at the intersection of geometric analysis, partial differential equations, and algebraic geometry. In joint work with Valentino Tosatti, Collins described the singularity formation of the Ricci flow on Kahler manifolds in terms of algebraic data. In recent work with Gabor Szekelyhidi, he gave a necessary and sufficient algebraic condition for existence of Ricci-flat metrics, which play an important role in string theory and mathematical physics. This result lead to the discovery of infinitely many new Einstein metrics on the 5-dimensional sphere. With Shing-Tung Yau and Adam Jacob, Collins is currently studying the relationship between categorical stability conditions and existence of solutions to differential equations arising from mirror symmetry.

Collins earned his BS in mathematics at the University of British Columbia in 2009, after which he completed his PhD in mathematics at Columbia University in 2014 under the direction of Duong H. Phong. Following a four-year appointment as a Benjamin Peirce Assistant Professor at Harvard University, Collins joins MIT as an assistant professor in the Department of Mathematics.

Julien de Wit develops and applies new techniques to study exoplanets, their atmospheres, and their interactions with their stars. While a graduate student in the Sara Seager group at MIT, he developed innovative analysis techniques to map exoplanet atmospheres, studied the radiative and tidal planet-star interactions in eccentric planetary systems, and constrained the atmospheric properties and mass of exoplanets solely from transmission spectroscopy. He plays a critical role in the TRAPPIST/SPECULOOS project, headed by Université of Liège, leading the atmospheric characterization of the newly discovered TRAPPIST-1 planets, for which he has already obtained significant results with the Hubble Space Telescope. De Wit’s efforts are now also focused on expanding the SPECULOOS network of telescopes in the northern hemisphere to continue the search for new potentially habitable TRAPPIST-1-like systems.

De Wit earned a BEng in physics and mechanics from the Université de Liège in Belgium in 2008, an MS in aeronautic engineering and an MRes in astrophysics, planetology, and space sciences from the Institut Supérieur de l’Aéronautique et de l’Espace at the Université de Toulouse, France in 2010; he returned to the Université de Liège for an MS in aerospace engineering, completed in 2011. After finishing his PhD in planetary sciences in 2014 and a postdoc at MIT, both under the direction of Sara Seager, he joins the MIT faculty in the Department of Earth, Atmospheric and Planetary Sciences as an assistant professor.

After earning a BS in mathematics and physics at the University of Michigan, Fiete obtained her PhD in 2004 at Harvard University in the Department of Physics. While holding an appointment at the Kavli Institute for Theoretical Physics at the University of California, Santa Barbara from 2004 to 2006, she was also a visiting member of the Center for Theoretical Biophysics at the University of California at San Diego. Fiete subsequently spent two years at Caltech as a Broad Fellow in brain circuitry, and in 2008 joined the faculty of the University of Texas at Austin. She joins the MIT faculty in the Department of Brain and Cognitive Sciences as an associate professor with tenure.

Ankur Jain explores the biology of RNA aggregation. Several genetic neuromuscular disorders, such as myotonic dystrophy and amyotrophic lateral sclerosis, are caused by expansions of nucleotide repeats in their cognate disease genes. Such repeats cause the transcribed RNA to form pathogenic clumps or aggregates. Jain uses a variety of biophysical approaches to understand how the RNA aggregates form, and how they can be disrupted to restore normal cell function. Jain will also study the role of RNA-DNA interactions in chromatin organization, investigating whether the RNA transcribed from telomeres (the protective repetitive sequences that cap the ends of chromosomes) undergoes the phase separation that characterizes repeat expansion diseases.

Jain completed a bachelor’s of technology degree in biotechnology and biochemical engineering at the Indian Institute of Technology Kharagpur, India in 2007, followed by a PhD in biophysics and computational biology at the University of Illinois at Urbana-Champaign under the direction of Taekjip Ha in 2013. After a postdoc at the University of California at San Francisco, he joins the MIT faculty in the Department of Biology as an assistant professor with an appointment as a member of the Whitehead Institute for Biomedical Research.

Kiyoshi Masui works to understand fundamental physics and the evolution of the universe through observations of the large-scale structure — the distribution of matter on scales much larger than galaxies. He works principally with radio-wavelength surveys to develop new observational methods such as hydrogen intensity mapping and fast radio bursts. Masui has shown that such observations will ultimately permit precise measurements of properties of the early and late universe and enable sensitive searches for primordial gravitational waves. To this end, he is working with a new generation of rapid-survey digital radio telescopes that have no moving parts and rely on signal processing software running on large computer clusters to focus and steer, including work on the Canadian Hydrogen Intensity Mapping Experiment (CHIME).

Masui obtained a BSCE in engineering physics at Queen’s University, Canada in 2008 and a PhD in physics at the University of Toronto in 2013 under the direction of Ue-Li Pen. After postdoctoral appointments at the University of British Columbia as the Canadian Institute for Advanced Research Global Scholar and the Canadian Institute for Theoretical Astrophysics National Fellow, Masui joins the MIT faculty in the Department of Physics as an assistant professor.

Phiala Shanahan studies theoretical nuclear and particle physics, in particular the structure and interactions of hadrons and nuclei from the fundamental (quark and gluon) degrees of freedom encoded in the Standard Model of particle physics. Shanahan’s recent work has focused on the role of gluons, the force carriers of the strong interactions described by quantum chromodynamics (QCD), in hadron and nuclear structure by using analytic tools and high-performance supercomputing. She recently achieved the first calculation of the gluon structure of light nuclei, making predictions that will be testable in new experiments proposed at Jefferson National Accelerator Facility and at the planned Electron-Ion Collider. She has also undertaken extensive studies of the role of strange quarks in the proton and light nuclei that sharpen theory predictions for dark matter cross-sections in direct detection experiments. To overcome computational limitations in QCD calculations for hadrons and in particular for nuclei, Shanahan is pursuing a program to integrate modern machine learning techniques in computational nuclear physics studies.

Shanahan obtained her BS in 2012 and her PhD in 2015, both in physics, from the University of Adelaide. She completed postdoctoral work at MIT in 2017, then held a joint position as an assistant professor at the College of William and Mary and senior staff scientist at the Thomas Jefferson National Accelerator Facility until 2018. She returns to MIT in the Department of Physics as an assistant professor.

Nike Sun works in probability theory at the interface of statistical physics and computation. Her research focuses in particular on phase transitions in average-case (randomized) formulations of classical computational problems. Her joint work with Jian Ding and Allan Sly establishes the satisfiability threshold of random k-SAT for large k, and relatedly the independence ratio of random regular graphs of large degree. Both are long-standing open problems where heuristic methods of statistical physics yield detailed conjectures, but few rigorous techniques exist. More recently she has been investigating phase transitions of dense graph models.

Sun completed BA mathematics and MA statistics degrees at Harvard in 2009, and an MASt in mathematics at Cambridge in 2010. She received her PhD in statistics from Stanford University in 2014 under the supervision of Amir Dembo. She held a Schramm fellowship at Microsoft New England and MIT Mathematics in 2014-2015 and a Simons postdoctoral fellowship at the University of California at Berkeley in 2016, and joined the Berkeley Department of Statistics as an assistant professor in 2016. She returns to the MIT Department of Mathematics as an associate professor with tenure.

Alison Wendlandt focuses on the development of selective, catalytic reactions using the tools of organic and organometallic synthesis and physical organic chemistry. Mechanistic study plays a central role in the development of these new transformations. Her projects involve the design of new catalysts and catalytic transformations, identification of important applications for selective catalytic processes, and elucidation of new mechanistic principles to expand powerful existing catalytic reaction manifolds.

Wendlandt received a BS in chemistry and biological chemistry from the University of Chicago in 2007, an MS in chemistry from Yale University in 2009, and a PhD in chemistry from the University of Wisconsin at Madison in 2015 under the direction of Shannon S. Stahl. Following an NIH Ruth L. Krichstein Postdoctoral Fellowship at Harvard University, Wendlandt joins the MIT faculty in the Department of Chemistry as an assistant professor.

Chenyang Xu specializes in higher-dimensional algebraic geometry, an area that involves classifying algebraic varieties, primarily through the minimal model program (MMP). MMP was introduced by Fields Medalist S. Mori in the early 1980s to make advances in higher dimensional birational geometry. The MMP was further developed by Hacon and McKernan in the mid-2000s, so that the MMP could be applied to other questions. Collaborating with Hacon, Xu expanded the MMP to varieties of certain conditions, such as those of characteristic p, and, with Hacon and McKernan, proved a fundamental conjecture on the MMP, generating a great deal of follow-up activity. In collaboration with Chi Li, Xu proved a conjecture of Gang Tian concerning higher-dimensional Fano varieties, a significant achievement. In a series of papers with different collaborators, he successfully applied MMP to singularities.

Xu received his BS in 2002 and MS in 2004 in mathematics from Peking University, and completed his PhD at Princeton University under János Kollár in 2008. He came to MIT as a CLE Moore Instructor in 2008-2011, and was subsequently appointed assistant professor at the University of Utah. He returned to Peking University as a research fellow at the Beijing International Center of Mathematical Research in 2012, and was promoted to professor in 2013. Xu joins the MIT faculty as a full professor in the Department of Mathematics.

Zhiwei Yun’s research is at the crossroads between algebraic geometry, number theory, and representation theory. He studies geometric structures aiming at solving problems in representation theory and number theory, especially those in the Langlands program. While he was a CLE Moore Instructor at MIT, he started to develop the theory of rigid automorphic forms, and used it to answer an open question of J-P Serre on motives, which also led to a major result on the inverse Galois problem in number theory. More recently, in his joint work with Wei Zhang, they give geometric interpretation of higher derivatives of automorphic L- functions in terms of intersection numbers, which sheds new light on the geometric analogue of the Birch and Swinnerton-Dyer conjecture.

Yun earned his BS at Peking University in 2004, after which he completed his PhD at Princeton University in 2009 under the direction of Robert MacPherson. After appointments at the Institute for Advanced Study and as a CLE Moore Instructor at MIT, he held faculty appointments at Stanford and Yale. He returned to the MIT Department of Mathematics as a full professor in the spring of 2018.

Mark Harnett named Vallee Foundation Scholar

The Bert L and N Kuggie Vallee Foundation has named McGovern Institute investigator Mark Harnett a 2018 Vallee Scholar. The Vallee Scholars Program recognizes original, innovative, and pioneering work by early career scientists at a critical juncture in their careers and provides $300,000 in discretionary funds to be spent over four years for basic biomedical research. Harnett is among five researchers named to this year’s Vallee Scholars Program.

Harnett, who is also the Fred and Carole Middleton Career Development Assistant Professor in the Department of Brain and Cognitive Sciences, is being recognized for his work exploring how the biophysical features of neurons give rise to the computational power of the brain. By exploiting new technologies and approaches at the interface of biophysics and systems neuroscience, research in the Harnett lab aims to provide a new understanding of the biology underlying how mammalian brains learn. This may open new areas of research into brain disorders characterized by atypical learning and memory (such as dementia and schizophrenia) and may also have important implications for designing new, brain-inspired artificial neural networks.

The Vallee Foundation was established in 1996 by Bert and Kuggie Vallee to foster originality, creativity, and leadership within biomedical scientific research and medical education. The foundation’s goal to fund originality, innovation, and pioneering work “recognizes the future promise of these scientists who are dedicated to understanding fundamental biological processes.” Harnett joins a list of 24 Vallee Scholars, including McGovern investigator Feng Zhang, who have been appointed to the program since its inception in 2013.

Feng Zhang named winner of the 2018 Keio Medical Science Prize

Feng Zhang and Masashi Yanagisawa have been named the 2018 winners of the prestigious Keio Medical Science Prize. Zhang is being recognized for the groundbreaking development of CRISPR-Cas9-mediated genome engineering in cells and its application for medical science. Zhang is an HHMI Investigator and the James and Patricia Poitras Professor of Neuroscience at MIT, an associate professor in MIT’s Departments of Brain and Cognitive Sciences and Biological Engineering, an investigator at the McGovern Institute for Brain Research, and a core member of the Broad Institute of MIT and Harvard. Masashi Yanagisawa, Director of the International Institute for Integrative Sleep Medicine at the University of Tsukuba, is being recognized for his seminal work on sleep control mechanisms.

“We are delighted that Feng is now a Keio Prize laureate,” says McGovern Institute Director Robert Desimone. “This truly recognizes the remarkable achievements that he has made at such a young age.”

The Keio Medical Prize is awarded to a maximum of two scientists each year, and is now in its 23rd year. The prize is offered by Keio University, and the selection committee specifically looks for laureates that have made an outstanding contribution to medicine or the life sciences. The prize was initially endowed by Dr. Mitsunada Sakaguchi in 1994, with the express condition that it be used to commend outstanding science, promote medical advances in medicine and the life sciences, expand researcher networks, and contribute to the well-being of humankind. The winners receive a certificate of merit, medal, and a monetary award of 10 million yen.

Feng Zhang is a molecular biologist who has contributed to the development of multiple molecular tools to accelerate our understanding of human disease and create new therapeutic modalities. During his graduate work Zhang contributed to the development of optogenetics, a system for activating neurons using light, which has advanced our understanding of brain connectivity. Zhang went on to pioneer the deployment of the microbial CRISPR-Cas9 system for genome engineering in eukaryotic cells. The ease and specificity of the system has led to its widespread use across the life sciences and it has groundbreaking implications for disease therapeutics, biotechnology, and agriculture. Zhang has continued to mine bacterial CRISPR systems for additional enzymes with useful properties, leading to the discovery of Cas13, which targets RNA, rather than DNA, and may potentially be a way to treat genetic diseases without altering the genome. He has also developed a molecular detection system called SHERLOCK based on the Cas13 family, which can sense trace amounts of genetic material, including viruses and alterations in genes that might be linked to cancer.

“I am tremendously honored to have our work recognized by the Keio Medical Prize,” says Zhang. “It is an inspiration to us to continue our work to improve human health.”

The prize ceremony will be held on December 18th 2018 at Keio University in Tokyo, Japan.