Protecting healthcare workers during the COVID-19 pandemic

“When the COVID-19 crisis hit the US this March, my biggest concern was the shortage of face masks, which are a key weapon for healthcare providers, frontline service workers, and the public to protect against respiratory transmission of COVID-19. In mid-March I kicked off a gofundme campaign for simple masks to protect frontline service workers but, when it was first announced that frontline healthcare providers were short, I completed the campaign and joined groups of scientists and physicians working on N95 mask reuse in Boston (MGB Center for COVID Innovation) and nation-wide (N95DECON). The N95DECON team and used zoom to connect volunteer scientists, engineers, clinicians and students from across the US to address this problem.

I am deeply committed to helping conserve and decontaminate the N95 masks that are essential for our healthcare workers to most safely treat COVID-19 patients.

I personally love zoom meetings from home for many reasons. For one thing, you can meet people instantaneously from all over the world, no need to travel at all. Also, it is less hierarchical than a typical conference because people all have the same place at the table, rather than some people being relegated to ‘the back of the room.’

McGovern research scientist Jill Crittenden (top left) in a zoom meeting with the Boston-based COVID-19 Innovation Center N95 Reuse team. Photo: Jill Crittenden

For two weeks, we met online daily and exchanged information, suggestions and ideas in a free, open, and transparent way. We reviewed a large body of the information on N95 decontamination and deliberated different methods based on evidence from scientific literature and available data. Our discussions followed the same principles I use in my own work in the Graybiel lab; exploring whether data is convincing, definitive, complete, and reproducible. I am so proud of our resulting report, which provides a summary of this critical information.

I am deeply committed to helping conserve and decontaminate the N95 masks that are essential for our healthcare workers to most safely treat COVID-19 patients. I know physicians personally who are very grateful that teams of scientists are doing the in-depth data analysis so that they can feel confident in what is best for their own health.”


Jill Crittenden is a research scientist in Ann Graybiel‘s lab at the McGovern Institute. She studies neural microcircuits in the basal ganglia that are relevant to Huntington’s and Parkinson’s diseases, dystonia, drug addiction, and repetitive movement disorders such as autism and obsessive-compulsive disorder. Read more about her N95DECON project on our news site.

Jill has also developed a set of helpful guidelines for face masks (either purchased or DIY). She discussed these guidelines, among other COVID-19 related topics on the podcast Dear Discreet Guide.

#WeAreMcGovern

How the brain encodes landmarks that help us navigate

When we move through the streets of our neighborhood, we often use familiar landmarks to help us navigate. And as we think to ourselves, “OK, now make a left at the coffee shop,” a part of the brain called the retrosplenial cortex (RSC) lights up.

While many studies have linked this brain region with landmark-based navigation, exactly how it helps us find our way is not well-understood. A new study from MIT neuroscientists now reveals how neurons in the RSC use both visual and spatial information to encode specific landmarks.

“There’s a synthesis of some of these signals — visual inputs and body motion — to represent concepts like landmarks,” says Mark Harnett, an assistant professor of brain and cognitive sciences and a member of MIT’s McGovern Institute for Brain Research. “What we went after in this study is the neuron-level and population-level representation of these different aspects of spatial navigation.”

In a study of mice, the researchers found that this brain region creates a “landmark code” by combining visual information about the surrounding environment with spatial feedback of the mice’s own position along a track. Integrating these two sources of information allowed the mice to learn where to find a reward, based on landmarks that they saw.

“We believe that this code that we found, which is really locked to the landmarks, and also gives the animals a way to discriminate between landmarks, contributes to the animals’ ability to use those landmarks to find rewards,” says Lukas Fischer, an MIT postdoc and the lead author of the study.

Harnett is the senior author of the study, which appears today in the journal eLife. Other authors are graduate student Raul Mojica Soto-Albors and recent MIT graduate Friederike Buck.

Encoding landmarks

Previous studies have found that people with damage to the RSC have trouble finding their way from one place to another, even though they can still recognize their surroundings. The RSC is also one of the first areas affected in Alzheimer’s patients, who often have trouble navigating.

The RSC is wedged between the primary visual cortex and the motor cortex, and it receives input from both of those areas. It also appears to be involved in combining two types of representations of space — allocentric, meaning the relationship of objects to each other, and egocentric, meaning the relationship of objects to the viewer.

“The evidence suggests that RSC is really a place where you have a fusion of these different frames of reference,” Harnett says. “Things look different when I move around in the room, but that’s because my vantage point has changed. They’re not changing with respect to one another.”

In this study, the MIT team set out to analyze the behavior of individual RSC neurons in mice, including how they integrate multiple inputs that help with navigation. To do that, they created a virtual reality environment for the mice by allowing them to run on a treadmill while they watch a video screen that makes it appear they are running along a track. The speed of the video is determined by how fast the mice run.

At specific points along the track, landmarks appear, signaling that there’s a reward available a certain distance beyond the landmark. The mice had to learn to distinguish between two different landmarks, and to learn how far beyond each one they had to run to get the reward.

Once the mice learned the task, the researchers recorded neural activity in the RSC as the animals ran along the virtual track. They were able to record from a few hundred neurons at a time, and found that most of them anchored their activity to a specific aspect of the task.

There were three primary anchoring points: the beginning of the trial, the landmark, and the reward point. The majority of the neurons were anchored to the landmarks, meaning that their activity would consistently peak at a specific point relative to the landmark, say 50 centimeters before it or 20 centimeters after it.

Most of those neurons responded to both of the landmarks, but a small subset responded to only one or the other. The researchers hypothesize that those strongly selective neurons help the mice to distinguish between the landmarks and run the correct distance to get the reward.

When the researchers used optogenetics (a tool that can turn off neuron activity) to block activity in the RSC, the mice’s performance on the task became much worse.

Combining inputs

The researchers also did an experiment in which the mice could choose to run or not while the video played at a constant speed, unrelated to the mice’s movement. The mice could still see the landmarks, but the location of the landmarks was no longer linked to a reward or to the animals’ own behavior. In that situation, RSC neurons did respond to the landmarks, but not as strongly as they did when the mice were using them for navigation.

Further experiments allowed the researchers to tease out just how much neuron activation is produced by visual input (seeing the landmarks) and by feedback on the mouse’s own movement. However, simply adding those two numbers yielded totals much lower than the neuron activity seen when the mice were actively navigating the track.

“We believe that is evidence for a mechanism of nonlinear integration of these inputs, where they get combined in a way that creates a larger response than what you would get if you just added up those two inputs in a linear fashion,” Fischer says.

The researchers now plan to analyze data that they have already collected on how neuron activity evolves over time as the mice learn the task. They also hope to perform further experiments in which they could try to separately measure visual and spatial inputs into different locations within RSC neurons.

The research was funded by the National Institutes of Health, the McGovern Institute, the NEC Corporation Fund for Research in Computers and Communications at MIT, and the Klingenstein-Simons Fellowship in Neuroscience.

2020 MacVicar Faculty Fellows named

The Office of the Vice Chancellor and the Registrar’s Office have announced this year’s Margaret MacVicar Faculty Fellows: materials science and engineering Professor Polina Anikeeva, literature Professor Mary Fuller, chemical engineering Professor William Tisdale, and electrical engineering and computer science Professor Jacob White.

Role models both in and out of the classroom, the new fellows have tirelessly sought to improve themselves, their students, and the Institute writ large. They have reimagined curricula, crossed disciplines, and pushed the boundaries of what education can be. They join a matchless academy of scholars committed to exceptional instruction and innovation.

Vice Chancellor Ian Waitz will honor the fellows at this year’s MacVicar Day symposium, “Learning through Experience: Education for a Fulfilling and Engaged Life.” In a series of lightning talks, student and faculty speakers will examine how MIT — through its many opportunities for experiential learning — supports students’ aspirations and encourages them to become engaged citizens and thoughtful leaders.

The event will be held on March 13 from 2:30-4 p.m. in Room 6-120. A reception will follow in Room 2-290. All in the MIT community are welcome to attend.

For nearly three decades, the MacVicar Faculty Fellows Program has been recognizing exemplary undergraduate teaching and advising around the Institute. The program was named after Margaret MacVicar, the first dean for undergraduate education and founder of the Undergraduate Research Opportunities Program (UROP). Nominations are made by departments and include letters of support from colleagues, students, and alumni. Fellows are appointed to 10-year terms in which they receive $10,000 per year of discretionary funds.

Polina Anikeeva

“I’m speechless,” Polina Anikeeva, associate professor of materials science and engineering and brain and cognitive sciences, says of becoming a MacVicar Fellow. “In my opinion, this is the greatest honor one could have at MIT.”

Anikeeva received her PhD from MIT in 2009 and became a professor in the Department of Materials Science and Engineering two years later. She attended St. Petersburg State Polytechnic University for her undergraduate education. Through her research — which combines materials science, electronics, and neurobiology — she works to better understand and treat brain disorders.

Anikeeva’s colleague Christopher Schuh says, “Her ability and willingness to work with students however and whenever they need help, her engaging classroom persona, and her creative solutions to real-time challenges all culminate in one of MIT’s most talented and beloved undergraduate professors.”

As an instructor, advisor, and marathon runner, Anikeeva has learned the importance of finding balance. Her colleague Lionel Kimerling reflects on this delicate equilibrium: “As a teacher, Professor Anikeeva is among the elite who instruct, inspire, and nurture at the same time. It is a difficult task to demand rigor with a gentle mentoring hand.”

Students call her classes “incredibly hard” but fun and exciting at the same time. She is “the consummate scientist, splitting her time evenly between honing her craft, sharing knowledge with students and colleagues, and mentoring aspiring researchers,” wrote one.

Her passion for her work and her devotion to her students are evident in the nomination letters. One student recounted their first conversation: “We spoke for 15 minutes, and after talking to her about her research and materials science, I had never been so viscerally excited about anything.” This same student described the guidance and support Anikeeva provided her throughout her time at MIT.

After working with Anikeeva to apply what she learned in the classroom to a real-world problem, this student recalled, “I honestly felt like an engineer and a scientist for the first time ever. I have never felt so fulfilled and capable. And I realize that’s what I want for the rest of my life — to feel the highs and lows of discovery.”

Anikeeva champions her students in faculty and committee meetings as well. She is a “reliable advocate for student issues,” says Caroline Ross, associate department head and professor in DMSE. “Professor Anikeeva is always engaged with students, committed to student well-being, and passionate about education.”

“Undergraduate teaching has always been a crucial part of my MIT career and life,” Anikeeva reflects. “I derive my enthusiasm and energy from the incredibly talented MIT students — every year they surprise me with their ability to rise to ever-expanding intellectual challenges. Watching them grow as scientists, engineers, and — most importantly — people is like nothing else.”

Mary Fuller

Experimentation is synonymous with education at MIT and it is a crucial part of literature Professor Mary Fuller’s classes. As her colleague Arthur Bahr notes, “Mary’s habit of starting with a discrete practical challenge can yield insights into much broader questions.”

Fuller attended Dartmouth College as an undergraduate, then received both her MA and PhD in English and American literature from The Johns Hopkins University. She began teaching at MIT in 1989. From 2013 to 2019, Fuller was head of the Literature Section. Her successor in the role, Shankar Raman, says that her nominators “found [themselves] repeatedly surprised by the different ways Mary has pushed the limits of her teaching here, going beyond her own comfort zones to experiment with new texts and techniques.”

“Probably the most significant thing I’ve learned in 30 years of teaching here is how to ask more and better questions,” says Fuller. As part of a series of discussions on ethics and computing, she has explored the possibilities of artificial intelligence from a literary perspective. She is also developing a tool for the edX platform called PoetryViz, which would allow MIT students and students around the world to practice close reading through poetry annotation in an entirely new way.

“We all innovate in our teaching. Every year. But, some of us innovate more than others,” Krishna Rajagopal, dean for digital learning, observes. “In addition to being an outstanding innovator, Mary is one of those colleagues who weaves the fabric of undergraduate education across the Institute.”

Lessons learned in Fuller’s class also underline the importance of a well-rounded education. As one alumna reflected, “Mary’s teaching carried a compassion and ethic which enabled non-humanities students to appreciate literature as a diverse, valuable, and rewarding resource for personal and social reflection.”

Professor Fuller, another student remarked, has created “an environment where learning is not merely the digestion of rote knowledge, but instead the broad-based exploration of ideas and the works connected to them.”

“Her imagination is capacious, her knowledge is deep, and students trust her — so that they follow her eagerly into new and exploratory territory,” says Professor of Literature Stephen Tapscott.

Fuller praises her students’ willingness to take that journey with her, saying, “None of my classes are required, and none are technical, so I feel that students have already shown a kind of intellectual generosity by putting themselves in the room to do the work.”

For students, the hard work is worth it. Mary Fuller, one nominator declared, is exactly “the type of deeply impactful professor that I attended MIT hoping to learn from.”

William Tisdale

William Tisdale is the ARCO Career Development Professor of chemical engineering and, according to his colleagues, a “true star” in the department.

A member of the faculty since 2012, he received his undergraduate degree from the University of Delaware and his PhD from the University of Minnesota. After a year as a postdoc at MIT, Tisdale became an assistant professor. His research interests include nanotechnology and energy transport.

Tisdale’s colleague Kristala Prather calls him a “curriculum fixer.” During an internal review of Course 10 subjects, the department discovered that 10.213 (Chemical and Biological Engineering) was the least popular subject in the major and needed to be revised. After carefully evaluating the coursework, and despite having never taught 10.213 himself, Tisdale envisioned a novel way of teaching it. With his suggestions, the class went from being “despised” to loved, with subject evaluations improving by 70 percent from one spring to the next. “I knew Will could make a difference, but I had no idea he could make that big of a difference in just one year,” remarks Prather.

One student nominator even went so far as to call 10.213, as taught by Tisdale, “one of my best experiences at MIT.”

Always patient, kind, and adaptable, Tisdale’s willingness to tackle difficult problems is reflected in his teaching. “While the class would occasionally start to mutiny when faced with a particularly confusing section, Prof. Tisdale would take our groans on with excitement,” wrote one student. “His attitude made us feel like we could all get through the class together.” Regardless of how they performed on a test, wrote another, Tisdale “clearly sent the message that we all always have so much more to learn, but that first and foremost he respected you as a person.”

“I don’t think I could teach the way I teach at many other universities,” Tisdale says. “MIT students show up on the first day of class with an innate desire to understand the world around them; all I have to do is pull back the curtain!”

“Professor Tisdale remains the best teacher, mentor, and role model that I have encountered,” one student remarked. “He has truly changed the course of my life.”

“I am extremely thankful to be at a university that values undergraduate education so highly,” Tisdale says. “Those of us who devote ourselves to undergraduate teaching and mentoring do so out of a strong sense of responsibility to the students as well as a genuine love of learning. There are few things more validating than being rewarded for doing something that already brings you joy.”

Jacob White

Jacob White is the Cecil H. Green Professor of Electrical Engineering and Computer Science (EECS) and chair of the Committee on Curricula. After completing his undergraduate degree at MIT, he received a master’s degree and doctorate from the University of California at Berkeley. He has been a member of the Course 6 faculty since 1987.

Colleagues and students alike observed White’s dedication not just to teaching, but to improving teaching throughout the Institute. As Luca Daniel and Asu Ozdaglar of the EECS department noted in their nomination letter, “Jacob completely understands that the most efficient way to make his passion and ideas for undergraduate education have a real lasting impact is to ‘teach it to the teachers!’”

One student wrote that White “has spent significant time and effort educating the lab assistants” of 6.302 (Feedback System Design). As one of these teaching assistants confirmed, White’s “enthusiastic spirit” inspired them to spend hours discussing how to best teach the subject. “Many people might think this is not how they want to spend their Thursday nights,” the student wrote. “I can speak for myself and the other TAs when I say that it was an incredibly fun and educational experience.”

His work to improve instruction has even expanded to other departments. A colleague describes White’s efforts to revamp 8.02 (Physics II) as “Herculean.” Working with a group of students and postdocs to develop experiments for this subject, “he seemed to be everywhere at once … while simultaneously teaching his own class.” Iterations took place over a year and a half, after which White trained the subject’s TAs as well. Hundreds of students are benefitting from these improved experiments.

White is, according to Daniel and Ozdaglar, “a colleague who sincerely, genuinely, and enormously cares about our undergraduate students and their education, not just in our EECS department, but also in our entire MIT home.”

When he’s not fine-tuning pedagogy or conducting teacher training, he is personally supporting his students. A visiting student described White’s attention: “He would regularly meet with us in groups of two to make sure we were learning. In a class of about 80 students in a huge lecture hall, it really felt like he cared for each of us.”

And his zeal has rubbed off: “He made me feel like being excited about the material was the most important thing,” one student wrote.
The significance of such a spark is not lost on White.

“As an MIT freshman in the late 1970s, I joined an undergraduate research program being pioneered by Professor Margaret MacVicar,” he says. “It was Professor MacVicar and UROP that put me on the academic’s path of looking for interesting problems with instructive solutions. It is a path I have walked for decades, with extraordinary colleagues and incredible students. So, being selected as a MacVicar Fellow? No honor could mean more to me.”

The neural basis of sensory hypersensitivity

Many people with autism spectrum disorders are highly sensitive to light, noise, and other sensory input. A new study in mice reveals a neural circuit that appears to underlie this hypersensitivity, offering a possible strategy for developing new treatments.

MIT and Brown University neuroscientists found that mice lacking a protein called Shank3, which has been previously linked with autism, were more sensitive to a touch on their whiskers than genetically normal mice. These Shank3-deficient mice also had overactive excitatory neurons in a region of the brain called the somatosensory cortex, which the researchers believe accounts for their over-reactivity.

There are currently no treatments for sensory hypersensitivity, but the researchers believe that uncovering the cellular basis of this sensitivity may help scientists to develop potential treatments.

“We hope our studies can point us to the right direction for the next generation of treatment development,” says Guoping Feng, the James W. and Patricia Poitras Professor of Neuroscience at MIT and a member of MIT’s McGovern Institute for Brain Research.

Feng and Christopher Moore, a professor of neuroscience at Brown University, are the senior authors of the paper, which appears today in Nature Neuroscience. McGovern Institute research scientist Qian Chen and Brown postdoc Christopher Deister are the lead authors of the study.

Too much excitation

The Shank3 protein is important for the function of synapses — connections that allow neurons to communicate with each other. Feng has previously shown that mice lacking the Shank3 gene display many traits associated with autism, including avoidance of social interaction, and compulsive, repetitive behavior.

In the new study, Feng and his colleagues set out to study whether these mice also show sensory hypersensitivity. For mice, one of the most important sources of sensory input is the whiskers, which help them to navigate and to maintain their balance, among other functions.

The researchers developed a way to measure the mice’s sensitivity to slight deflections of their whiskers, and then trained the mutant Shank3 mice and normal (“wild-type”) mice to display behaviors that signaled when they felt a touch to their whiskers. They found that mice that were missing Shank3 accurately reported very slight deflections that were not noticed by the normal mice.

“They are very sensitive to weak sensory input, which barely can be detected by wild-type mice,” Feng says. “That is a direct indication that they have sensory over-reactivity.”

Once they had established that the mutant mice experienced sensory hypersensitivity, the researchers set out to analyze the underlying neural activity. To do that, they used an imaging technique that can measure calcium levels, which indicate neural activity, in specific cell types.

They found that when the mice’s whiskers were touched, excitatory neurons in the somatosensory cortex were overactive. This was somewhat surprising because when Shank3 is missing, synaptic activity should drop. That led the researchers to hypothesize that the root of the problem was low levels of Shank3 in the inhibitory neurons that normally turn down the activity of excitatory neurons. Under that hypothesis, diminishing those inhibitory neurons’ activity would allow excitatory neurons to go unchecked, leading to sensory hypersensitivity.

To test this idea, the researchers genetically engineered mice so that they could turn off Shank3 expression exclusively in inhibitory neurons of the somatosensory cortex. As they had suspected, they found that in these mice, excitatory neurons were overactive, even though those neurons had normal levels of Shank3.

“If you only delete Shank3 in the inhibitory neurons in the somatosensory cortex, and the rest of the brain and the body is normal, you see a similar phenomenon where you have hyperactive excitatory neurons and increased sensory sensitivity in these mice,” Feng says.

Reversing hypersensitivity

The results suggest that reestablishing normal levels of neuron activity could reverse this kind of hypersensitivity, Feng says.

“That gives us a cellular target for how in the future we could potentially modulate the inhibitory neuron activity level, which might be beneficial to correct this sensory abnormality,” he says.

Many other studies in mice have linked defects in inhibitory neurons to neurological disorders, including Fragile X syndrome and Rett syndrome, as well as autism.

“Our study is one of several that provide a direct and causative link between inhibitory defects and sensory abnormality, in this model at least,” Feng says. “It provides further evidence to support inhibitory neuron defects as one of the key mechanisms in models of autism spectrum disorders.”

He now plans to study the timing of when these impairments arise during an animal’s development, which could help to guide the development of possible treatments. There are existing drugs that can turn down excitatory neurons, but these drugs have a sedative effect if used throughout the brain, so more targeted treatments could be a better option, Feng says.

“We don’t have a clear target yet, but we have a clear cellular phenomenon to help guide us,” he says. “We are still far away from developing a treatment, but we’re happy that we have identified defects that point in which direction we should go.”

The research was funded by the Hock E. Tan and K. Lisa Yang Center for Autism Research at MIT, the Stanley Center for Psychiatric Research at the Broad Institute of MIT and Harvard, the Nancy Lurie Marks Family Foundation, the Poitras Center for Psychiatric Disorders Research at the McGovern Institute, the Varanasi Family, R. Buxton, and the National Institutes of Health.

Joshua Sanes awarded the 2020 Scolnick Prize

The McGovern Institute announced today that Joshua Sanes is the 2020 recipient of the Edward M. Scolnick Prize in Neuroscience. Sanes is being recognized for his numerous contributions to our understanding of synapse development. It was Sanes who focused the power of molecular genetics toward understanding how synapses are built. He is currently the Jeff C. Tarr Professor of Molecular and Cellular Biology and the Paul J. Finnegan Family Director at the Center for Brain Science at Harvard University.

“We have followed Josh’s work for many years, and the award honors the profound impact he has had on neuroscience” says Robert Desimone, director of the McGovern Institute and the chair of the committee. “His work on synapse development and connectivity is critical to understanding brain disorders, and will also be essential to deciphering the highest functions of the brain.”

Individual neurons are labeled in the hippocampus of the Brainbow mouse. The Sanes lab developed this method, yielding some of the most iconic images in neuroscience. Image: Josh Sanes

While the space between neurons at the synapse is called a cleft, it has a defined structure, and as a postdoctoral fellow and faculty member at Washington University, Sanes studied the extracellular matrix proteins that line this region in the motor system. This work provided a critical entry point to studying synaptic development in the central nervous system and Sanes went on to examine how synapses form with exquisite specificity. In pursuit of understanding interactions in the nervous system, Sanes developed novel cell-marking methods that allow neuronal connectivity to be traced using multi-colored fluorescent markers. This work led to development of the ‘Brainbow’ mouse, yielding some of the most striking and iconic images in recent neuroscience. This line of research has recently leveraged modern sequencing techniques that have even identified an entirely novel cell type in the long-studied retina. The methodologies and findings from the Sanes lab have had a global impact, and deepened our understanding of how neurons find one another and connect.

Sanes becomes the 16th researcher to win the prestigious prize, established in 2004 by Merck to honor Scolnick, who spent 17 years holding the top research post at Merck Research Laboratories. Sanes will deliver the Scolnick Prize lecture at the McGovern Institute on April 27th, 2020 at 4:00pm in the Singleton Auditorium of MIT’s Brain and Cognitive Sciences Complex (Bldg 46-3002), 43 Vassar Street in Cambridge. The event is free and open to the public.

 

Explaining repetitive behavior linked to amphetamine use

Repetitive movements such as nail-biting and pacing are very often seen in humans and animals under the influence of habit-forming drugs. Studies at the McGovern Institute have found that these repetitive behaviors may be due to a breakdown in communication between neurons in the striatum – a deep brain region linked to habit and movement, among other functions.

The Graybiel lab has a long-standing interest in habit formation and the effects of addiction on brain circuits related to the striatum, a key part of the basal ganglia. The Graybiel lab previously found remarkably strong correlations between gene expression levels in specific parts of the striatum and exposure to psychomotor stimulants such as amphetamine and cocaine. The longer the exposure to stimulant, the more repetitive behavior in models, and the more brain circuits changed. These findings held across animal models.

The lab has found that if they train animals to develop habits, they can completely block these repetitive behaviors using targeted inhibition or excitation of the circuits. They even could block repetitive movement patterns in a mouse model of obsessive-compulsive disorder (OCD). These experiments mimicked situations in humans in which drugs or anxiety-inducing experiences can lead to habits and repetitive movement patterns—from nail-biting to much more dangerous habitual actions.

Ann Graybiel (right) at work in the lab with research scientist Jill Crittenden. Photo: Justin Knight

Why would these circuits exist in the brain if they so often produce “bad” habits and destructive behaviors, as seen in compulsive use of drugs such as opioids or even marijuana? One answer is that we have to be flexible and ready to switch our behavior if something dangerous occurs in the environment. Habits and addictions are, in a way, the extreme pushing of this flexible system in the other direction, toward the rigid and repetitive.

“One important clue is that for many of these habits and repetitive and addictive behaviors, the person isn’t even aware that they are doing the same thing again and again. And if they are not aware, they can’t control themselves and stop,” explains Ann Graybiel, an Institute Professor at MIT. “It is as though the ‘rational brain’ has great difficulty in controlling the ‘habit circuits’ of the brain.” Understanding loss of communication is a central theme in much of the Graybiel lab’s work.

Graybiel, who is also a founding member of the McGovern Institute, is now trying to understand the underlying circuits at the cellular level. The lab is examining the individual components of the striatal circuits linked to selecting actions and motivating movement, circuits that seem to be directly controlled by drugs of abuse.

In groundbreaking early work, Graybiel discovered that the striatum has distinct compartments, striosomes and matrix. These regions are spatially and functionally distinct and separately connect, through striatal projection neurons (SPNs), to motor-control centers or to neurons that release dopamine, a neurotransmitter linked to all drugs of abuse. It is in these components that Graybiel and colleagues have more recently found strong effects of drugs. Indeed opposite changes in gene expression in the striosome SPNs versus the matrix SPNs, raises the possibility that an imbalance in gene regulation leads to abnormally inflexible behaviors caused by drug use.

“It was known that cholinergic interneurons tend to reside along the borders of the two striatal compartments, but whether this cell type mediates communication between the compartments was unknown,” explains first author Jill Crittenden, a research scientist in the Graybiel lab. “We wanted to know whether cholinergic signaling to the two compartments is disrupted by drugs that induce abnormally repetitive behaviors.”

Amphetamine drives gene transcription in striosomes. The top panel shows striosomes (red) are disticnt from matrix (green). Amphetamine treatment activates lead to markers of activation (the immediate early gene c-Fos, red in 2 lower panels) in drug-treated animals (bottom panel), but not controls (middle panel). Image: Jill Crittenden

It was known that cholinergic interneurons are activated by important environmental cues and promote flexible rather than repetitive behavior, how this is related to interaction with SPNs in the striatum was unclear. “Using high-resolution microscopy,” explains Crittenden, “we could see for the first time that cholinergic interneurons send many connections to both striosome and matrix SPNs, well-placed to coordinate signaling directly across the two striatal compartments that appear otherwise isolated.”

Using a technique known as optogenetics, the Graybiel group stimulated mouse cholinergic interneurons and monitored the effects on striatal SPNs in brain tissue. They found that stimulating the interneurons inhibited the ongoing signaling activity that was induced by current injection in matrix and striatal SPNs. However, when examining the brains of animals on high doses of amphetamine and that were displaying repetitive behavior, stimulating the relevant interneurons failed to interrupt evoked activity in SPNs.

Using an inhibitor, the authors were able to show that these neural pathways depend on the nicotinic acetylcholine receptor. Inhibiting this cell-surface signaling receptor had a similar effect to drug intoxication on intercommunication among striatal neurons. Since break down of cholinergic interneuron signaling across striosome and matrix compartments under drug intoxication may reduce behavioral flexibility and cue responsiveness, the work suggests one mechanism for how drugs of abuse hijack action-selection systems of the brain and drive pathological habit-formation.

The Graybiel lab is excited that they can now manipulate these behaviors by manipulating very particular circuits components in the habit circuits. Most recently they have discovered that they can even fully block the effects of stress by manipulating cellular components of these circuits. They now hope to dive deep into these circuits to find out the mystery of how to control them.

“We hope that by pinpointing these circuit elements—which seem to have overlapping effects on habit formation, addiction and stress, we help to guide the development of better therapies for addiction,” explains Graybiel. “We hope to learn about what the use of drugs does to brain circuits with both short term use and long term use. This is an urgent need.”

Single neurons can encode distinct landmarks

The organization of many neurons wired together in a complex circuit gives the brain its ability to perform powerful calculations. Work from the Harnett lab recently showed that even single neurons can process more information than previously thought, representing distinct variables at the subcellular level during behavior.

McGovern Investigator Mark Harnett and postdoc Jakob Voigts conducted an extremely delicate and intricate imaging experiment on different parts of the same neuron in the mouse retinosplenial cortex during 2-D navigation. Their set up allowed 2-photon imaging of neuronal sub-compartments during free 2-D navigation with head rotation, the latter being important to follow neural activity during naturalistic, complex behavior.

Recording computation by subcompartments in neurons.

 

In the work, published recently in Neuron, the authors used Ca2+-imaging to show that the soma in a single neuron was consistently active when mice were at particular landmarks as they navigated in an arena. The dendrites (tree-like antennas that receive input from other neurons) of exactly the same neuron were robustly active independent of the soma at distinct positions and orientations in the arena. This strongly suggests that the dendrites encode distinct information compared to their parent soma, in this case spatial variables during navigation, laying the foundation for studying sub-cellular processes during complex behaviors.

 

Two CRISPR scientists on the future of gene editing

As part of our Ask the Brain series, Martin Wienisch and Jonathan Wilde of the Feng lab look into the crystal ball to predict the future of CRISPR tech.

_____

Where will CRISPR be in five years?

Jonathan: We’ll definitely have more efficient, more precise, and safer editing tools. An immediate impact on human health may be closer than we think through more nutritious and resilient crops. Also, I think we will have more viable tools available for repairing disease-causing mutations in the brain, which is something that the field is really lacking right now.

Martin: And we can use these technologies with new disease models to help us understand brain disorders such as Huntington’s disease.

Jonathan: There are also incredible tools being discovered in nature: exotic CRISPR systems from newly discovered bacteria and viruses. We could use these to attack disease-causing bacteria.

Martin: We would then be using CRISPR systems for the reason they evolved. Also improved gene drives, CRISPR-systems that can wipe out disease-carrying organisms such as mosquitoes, could impact human health in that time frame.

What will move gene therapy forward?

Martin: A breakthrough on delivery. That’s when therapy will exponentially move forward. Therapy will be tailored to different diseases and disorders, depending on relevant cell types or the location of mutations for example.

Jonathan: Also panning biodiversity even faster: we’ve only looked at one small part of the tree of life for tools. Sequencing and computational advances can help: a future where we collect and analyze genomes in the wild using portable sequencers and laptops can only quicken the pace of new discoveries.

_____

Do you have a question for The Brain? Ask it here.

McGovern scientists named STAT Wunderkinds

McGovern researchers Sam Rodriques and Jonathan Strecker have been named to the class of 2019 STAT wunderkinds. This group of 22 researchers was selected from a national pool of hundreds of nominees, and aims to recognize trail-blazing scientists that are on the cusp of launching their careers but not yet fully independent.

“We were thrilled to receive this news,” said Robert Desimone, director of the McGovern Institute. “It’s great to see the remarkable progress being made by young scientists in McGovern labs be recognized in this way.”

Finding context

Sam Rodriques works in Ed Boyden’s lab at the McGovern Institute, where he develops new technologies that enable researchers to understand the behaviors of cells within their native spatial and temporal context.

“Psychiatric disease is a huge problem, but only a handful of first-in-class drugs for psychiatric diseases approved since the 1960s,” explains Rodriques, also affiliated with the MIT Media Lab and Broad Institute. “Coming up with novel cures is going to require new ways to generate hypotheses about the biological processes that underpin disease.”

Rodriques also works on several technologies within the Boyden lab, including preserving spatial information in molecular mapping technologies, finding ways of following neural connectivity in the brain, and Implosion Fabrication, or “Imp Fab.” This nanofabrication technology allows objects to be evenly shrunk to the nanoscale and has a wide range of potential applications, including building new miniature devices for examining neural function.

“I was very surprised, not expecting it at all!” explains Rodriques when asked about becoming a STAT Wunderkind, “I’m sure that all of the hundreds of applicants are very accomplished scientists, and so to be chosen like this is really an honor.”

New tools for gene editing

Jonathan Strecker is currently a postdoc working in Feng Zhang’s lab, and associated with both the McGovern Institute and Broad Institute. While CRISPR-Cas9 continues to have a profound effect and huge potential for research and biomedical, and agricultural applications, the ability to move entire genes into specific target locations remained out reach.

“Genome editing with CRISPR-Cas enzymes typically involves cutting and disrupting genes, or making certain base edits,” explains Strecker, “however, inserting large pieces of DNA is still hard to accomplish.”

As a postdoctoral researcher in the lab of CRISPR pioneer Feng Zhang, Strecker led research that showed how large sequences could be inserted into a genome at a given location.

“Nature often has interesting solutions to these problems and we were fortunate to identify and characterize a remarkable CRISPR system from cyanobacteria that functions as a programmable transposase.”

Importantly, the system he discovered, called CAST, doesn’t require cellular machinery to insert DNA. This is important as it means that CAST could work in many cell types, including those that have stopped dividing such as neurons, something that is being pursued.

By finding new sources of inspiration, be it nature or art, both Rodriques and Strecker join a stellar line up of young investigators being recognized for creativity and innovation.

 

Brain region linked to altered social interactions in autism model

Although psychiatric disorders can be linked to particular genes, the brain regions and mechanisms underlying particular disorders are not well-understood. Mutations or deletions of the SHANK3 gene are strongly associated with autism spectrum disorder (ASD) and a related rare disorder called Phelan-McDermid syndrome. Mice with SHANK3 mutations also display some of the traits associated with autism, including avoidance of social interactions, but the brain regions responsible for this behavior have not been identified.

A new study by neuroscientists at MIT and colleagues in China provides clues to the neural circuits underlying social deficits associated with ASD. The paper, published in Nature Neuroscience, found that structural and functional impairments in the anterior cingulate cortex (ACC) of SHANK3 mutant mice are linked to altered social interactions.

“Neurobiological mechanisms of social deficits are very complex and involve many brain regions, even in a mouse model,” explains Guoping Feng, the James W. and Patricia T. Poitras Professor at MIT and one of the senior authors of the study. “These findings add another piece of the puzzle to mapping the neural circuits responsible for this social deficit in ASD models.”

The Nature Neuroscience paper is the result of a collaboration between Feng, who is also an investigator at MIT’s McGovern Institute and a senior scientist in the Broad Institute’s Stanley Center for Psychiatric Research, and Wenting Wang and Shengxi Wu at the Fourth Military Medical University, Xi’an, China.

A number of brain regions have been implicated in social interactions, including the prefrontal cortex (PFC) and its projections to brain regions including the nucleus accumbens and habenula, but these studies failed to definitively link the PFC to altered social interactions seen in SHANK3 knockout mice.

In the new study, the authors instead focused on the ACC, a brain region noted for its role in social functions in humans and animal models. The ACC is also known to play a role in fundamental cognitive processes, including cost-benefit calculation, motivation, and decision making.

In mice lacking SHANK3, the researchers found structural and functional disruptions at the synapses, or connections, between excitatory neurons in the ACC. The researchers went on to show that the loss of SHANK3 in excitatory ACC neurons alone was enough to disrupt communication between these neurons and led to unusually reduced activity of these neurons during behavioral tasks reflecting social interaction.

Having implicated these ACC neurons in social preferences and interactions in SHANK3 knockout mice, the authors then tested whether activating these same neurons could rescue these behaviors. Using optogenetics and specfic drugs, the researchers activated the ACC neurons and found improved social behavior in the SHANK3 mutant mice.

“Next, we are planning to explore brain regions downstream of the ACC that modulate social behavior in normal mice and models of autism,” explains Wenting Wang, co-corresponding author on the study. “This will help us to better understand the neural mechanisms of social behavior, as well as social deficits in neurodevelopmental disorders.”

Previous clinical studies reported that anatomical structures in the ACC were altered and/or dysfunctional in people with ASD, an initial indication that the findings from SHANK3 mice may also hold true in these individuals.

The research was funded, in part, by the Natural Science Foundation of China. Guoping Feng was supported by NIMH grant no. MH097104, the  Poitras Center for Psychiatric Disorders Research at the McGovern Institute at MIT, and the Hock E. Tan and K. Lisa Yang Center for Autism Research at the McGovern Institute at MIT.